EEG Channel Interpolation Using Deep Encoder-decoder Networks

被引:5
|
作者
Saba-Sadiya, Sari [1 ]
Alhanai, Tuka [2 ]
Liu, Taosheng [3 ]
Ghassemi, Mohammad M. [1 ]
机构
[1] Michigan State Univ, Dept Comp Sci, 428 S Shaw Ln, E Lansing, MI 48824 USA
[2] New York Univ Abu Dhabi, Dept Elect & Comp Engn, Abu Dhabi, U Arab Emirates
[3] Michigan State Univ, Dept Psychol, 316 Phys Rd, E Lansing, MI 48824 USA
关键词
SPHERICAL SPLINES;
D O I
10.1109/BIBM49941.2020.9312979
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Electrode "pop" artifacts originate from the spontaneous loss of connectivity between a surface and an electrode. Electroencephalography (EEG) uses a dense array of electrodes, hence popped segments are among the most pervasive type of artifact seen during the collection of EEG data. In many cases, the continuity of EEG data is critical for downstream applications (e.g. brain machine interface) and requires that popped segments be accurately interpolated. In this paper we frame the interpolation problem as a self-learning task using a deep encoder-decoder network. We compare our approach against contemporary interpolation methods on a publicly available EEG data set. Our approach exhibited a minimum of similar to 15% improvement over contemporary approaches when tested on subjects and tasks not used during model training. We demonstrate how our model's performance can be enhanced further on novel subjects and tasks using transfer learning. All code and data associated with this study is open-source to enable ease of extension and practical use. To our knowledge, this work is the first solution to the EEG interpolation problem that uses deep learning.
引用
收藏
页码:2432 / 2439
页数:8
相关论文
共 50 条
  • [1] A Lightweight Encoder-Decoder Path for Deep Residual Networks
    Jin, Xin
    Xie, Yanping
    Wei, Xiu-Shen
    Zhao, Bo-Rui
    Zhang, Yongshun
    Tan, Xiaoyang
    Yu, Yang
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (02) : 866 - 878
  • [2] On Mining Conditions using Encoder-decoder Networks
    Gallego, Fernando O.
    Corchuelo, Rafael
    [J]. PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 624 - 630
  • [3] Modeling clinical assessor intervariability using deep hypersphere encoder-decoder networks
    van der Putten, Joost
    van der Sommen, Fons
    de Groof, Jeroen
    Struyvenberg, Maarten
    Zinger, Svitlana
    Curvers, Wouter
    Schoon, Erik
    Bergman, Jacques
    de With, Peter H. N.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (14): : 10705 - 10717
  • [4] Multistep Forecasting of Soil Moisture Using Spatiotemporal Deep Encoder-Decoder Networks
    Li, Lu
    Dai, Yongjiu
    Shangguan, Wei
    Wei, Nan
    Wei, Zhongwang
    Gupta, Surya
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2022, 23 (03) : 337 - 350
  • [5] Deep encoder-decoder networks for belt longitudinal tear detection
    You, Lei
    Luo, Minghua
    Zhu, Xinglin
    Zhou, Bin
    [J]. MEASUREMENT & CONTROL, 2024,
  • [6] Unsupervised Feature Selection using Encoder-Decoder Networks
    SharifiPour, Sasan
    Fayyazi, Hossein
    Sabokro, Mohammad
    [J]. 2020 6TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2020,
  • [7] Interpretable Transformations with Encoder-Decoder Networks
    Worrall, Daniel E.
    Garbin, Stephan J.
    Turmukhambetov, Daniyar
    Brostow, Gabriel J.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5737 - 5746
  • [8] MRI Brain Tumor Segmentation Using Deep Encoder-Decoder Convolutional Neural Networks
    Yan, Benjamin B.
    Wei, Yujia
    Jagtap, Jaidip Manikrao M.
    Moassefi, Mana
    Garcia, Diana V. Vera
    Singh, Yashbir
    Vahdati, Sanaz
    Faghani, Shahriar
    Erickson, Bradley J.
    Conte, Gian Marco
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 80 - 89
  • [9] Compressive MRI quantification using convex spatiotemporal priors and deep encoder-decoder networks
    Golbabaee, Mohammad
    Buonincontri, Guido
    Pirkl, Carolin M.
    Menzel, Marion, I
    Menze, Bjoern H.
    Davies, Mike
    Gomez, Pedro A.
    [J]. MEDICAL IMAGE ANALYSIS, 2021, 69
  • [10] Deep Architecture Based Spalling Severity Detection System Using Encoder-Decoder Networks
    Yasmin, Tamanna
    Le, Chuong
    Hung Manh La
    [J]. ADVANCES IN VISUAL COMPUTING, ISVC 2022, PT II, 2022, 13599 : 332 - 343