Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy

被引:140
|
作者
Bertness, K. A. [1 ]
Roshko, A. [1 ]
Mansfield, L. M. [1 ]
Harvey, T. E. [1 ]
Sanford, N. A. [1 ]
机构
[1] Natl Inst Stand & Technol, Div Optoelect, Boulder, CO 80302 USA
关键词
nanostructures; molecular beam epitaxy; nitrides; semiconducting III-V materials;
D O I
10.1016/j.jcrysgro.2008.03.033
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Although most semiconductor nanowires are grown via the vapor-liquid-solid mechanism, we present evidence that GaN nanowires form because of thermodynamically driven variations in surface sticking coefficients on different crystallographic planes under certain conditions in molecular beam epitaxy (MBE). Specifically, the wires nucleate spontaneously and then propagate because the sticking coefficient on the (0 0 0 1) c-plane is higher than that on the {1100} m-plane under conditions of high temperature (810-830 degrees C) and high N-2 overpressure. Elemental Ga droplets are unstable under these growth conditions and therefore cannot act as catalytic sites for nanowire growth. This conclusion is based on differences in morphology and growth conditions for GaN nanowires grown with and without catalysts, whether the catalysts are extrinsic metals or Ga droplets. The spontaneous MBE growth of GaN nanowires is therefore shown to be distinct in mechanism from that of the growth of most semiconductor nanowires. Published by Elsevier B.V.
引用
收藏
页码:3154 / 3158
页数:5
相关论文
共 50 条
  • [21] Stochastic model and simulation of growth and coalescence of spontaneously formed GaN nanowires in molecular beam epitaxy
    Sabelfeld, K. K.
    Kablukova, E. G.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2018, 141 : 341 - 352
  • [22] Structural Properties of GaN Nanowires and GaN/AlN Insertions Grown by Molecular Beam Epitaxy
    Bougerol, C.
    Songmuang, R.
    Camacho, D.
    Niquet, Y. M.
    Daudin, B.
    [J]. 16TH INTERNATIONAL CONFERENCE ON MICROSCOPY OF SEMICONDUCTING MATERIALS, 2010, 209
  • [23] Formation of Ge quantum dots on GaN nanowires by molecular beam epitaxy
    Ilkiv, I. V.
    Kotlyar, K. P.
    Kirilenko, D. A.
    Sharov, V. A.
    Reznik, R. R.
    Cirlin, G. E.
    [J]. ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2023, 16 (01): : 341 - 345
  • [24] Synthesis of GaN nanowires on Si (111) substrates by molecular beam epitaxy
    Bolshakov, A. D.
    Sapunov, G. A.
    Mozharov, A. M.
    Cirlin, G. E.
    Shtrom, I. V.
    Mukhin, I. S.
    [J]. 3RD INTERNATIONAL SCHOOL AND CONFERENCE ON OPTOELECTRONICS, PHOTONICS, ENGINEERING AND NANOSTRUCTURES (SAINT PETERSBURG OPEN 2016), 2016, 741
  • [25] In situ control of gan growth by molecular beam epitaxy
    R. Held
    D. E. Crawford
    A. M. Johnston
    A. M. Dabiran
    P. I. Cohen
    [J]. Journal of Electronic Materials, 1997, 26 : 272 - 280
  • [26] Molecular beam epitaxy growth of GaN, AIN and InN
    Wang, XQ
    Yoshikawa, A
    [J]. PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION OF MATERIALS, 2004, 48-9 : 42 - 103
  • [27] In situ control of GaN growth by molecular beam epitaxy
    Held, R
    Crawford, DE
    Johnston, AM
    Dabiran, AM
    Cohen, PI
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 1997, 26 (03) : 272 - 280
  • [28] Plasma assisted molecular beam epitaxy growth of GaN
    Einfeldt, S
    Birkle, U
    Thomas, C
    Fehrer, M
    Heinke, H
    Hommel, D
    [J]. MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 50 (1-3): : 12 - 15
  • [29] Growth of GaN with warm ammonia by molecular beam epitaxy
    Kawaharazuka, A.
    Yoshizaki, T.
    Ploog, K. H.
    Horikoshi, Y.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2009, 311 (07) : 2025 - 2028
  • [30] GaN growth by compound source molecular beam epitaxy
    Honda, T
    Sato, K
    Hashimoto, T
    Shinohara, M
    Kawanishi, H
    [J]. JOURNAL OF CRYSTAL GROWTH, 2002, 237 (1-4 II) : 1008 - 1011