Global Sufficient Conditions for Nonconvex Cubic Minimization Problem with Box Constraints

被引:0
|
作者
Wang, Yanjun [1 ]
Liang, Zhian [1 ]
Shen, Linsong [1 ]
机构
[1] Shanghai Univ Finance & Econ, Dept Appl Math, Shanghai 200433, Peoples R China
来源
关键词
Cubic minimization problem; Global sufficient conditions; Box constraints; OPTIMIZATION;
D O I
10.1007/978-3-319-08377-3_4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we focus on deriving some sufficient conditions for global solutions to cubic minimization problems with box constraints. Our main tool is an extension of the global subdifferential, L-normal cone approach, developed by Jeyakumar et al. (J. Glob. Optim., 2007; Math. Program. Ser. A 110, 2007), and underestimator functions. By applying these tools to characteristic global solutions, we provide some sufficient conditions for cubic programming problem with box constraints. An example is given to demonstrate that the sufficient conditions can be used effectively for identifying global minimizers of certain cubic minimization problems with box constraints.
引用
收藏
页码:32 / 39
页数:8
相关论文
共 50 条
  • [1] Global optimality conditions for cubic minimization problem with box or binary constraints
    Yanjun Wang
    Zhian Liang
    [J]. Journal of Global Optimization, 2010, 47 : 583 - 595
  • [2] Global optimality conditions for cubic minimization problem with box or binary constraints
    Wang, Yanjun
    Liang, Zhian
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2010, 47 (04) : 583 - 595
  • [3] Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem
    Zhang, Xiaomei
    Wang, Yanjun
    Ma, Weimin
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [4] Sufficient conditions and perfect duality in nonconvex minimization with inequality constraints
    Gao, David Yang
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2005, 1 (01) : 53 - 63
  • [5] NEW GLOBAL OPTIMALITY CONDITIONS FOR CUBIC MINIMIZATION SUBJECT TO BOX OR BIVALENT CONSTRAINTS
    Zhou, Xue-Gang
    Cao, Bing-Yuan
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2012, 8 (03): : 631 - 647
  • [6] Global optimality conditions for cubic minimization problems with cubic constraints
    Zhou, Xue-Gang
    Yang, Xiao-Peng
    Cao, Bing-Yuan
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2015, 82 (03) : 243 - 264
  • [7] Global optimality conditions for cubic minimization problems with cubic constraints
    Xue-Gang Zhou
    Xiao-Peng Yang
    Bing-Yuan Cao
    [J]. Mathematical Methods of Operations Research, 2015, 82 : 243 - 264
  • [8] CONDITIONS OF GLOBAL EXTREMUM IN ONE NONCONVEX MINIMIZATION PROBLEM
    STREKALOVSKII, AS
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1991, (02): : 94 - 96
  • [9] Global optimality conditions for nonconvex minimization problems with quadratic constraints
    Li, Guoquan
    Wu, Zhiyou
    Quan, Jing
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [10] Global optimality conditions for nonconvex minimization problems with quadratic constraints
    Guoquan Li
    Zhiyou Wu
    Jing Quan
    [J]. Journal of Inequalities and Applications, 2015