Sufficient conditions and perfect duality in nonconvex minimization with inequality constraints

被引:18
|
作者
Gao, David Yang [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
关键词
global optimization; duality; concave minimization; quadratic programming; NP-hard problems; optimality condition;
D O I
10.3934/jimo.2005.1.53
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a duality theory for solving concave minimization problem and nonconvex quadratic programming problem subjected to nonlinear inequality constraints. By use of the canonical dual transformation developed recently, two canonical dual problems are formulated, respectively. These two dual problems are perfectly dual to the primal problems with zero duality gap. It is proved that the sufficient conditions for global minimizers and local extrema (both minima and maxima) are controlled by the triality theory discovered recently [5]. This triality theory can be used to develop certain useful primal-dual methods for solving difficult nonconvex minimization problems. Results shown that the difficult quadratic minimization problem with quadratic constraint can be converted into a one-dimensional dual problem, which can be solved completely to obtain all KKT points and global minimizer.
引用
收藏
页码:53 / 63
页数:11
相关论文
共 50 条