Global optimality conditions for cubic minimization problems with cubic constraints

被引:0
|
作者
Zhou, Xue-Gang [1 ,2 ]
Yang, Xiao-Peng [1 ,3 ]
Cao, Bing-Yuan [1 ,4 ]
机构
[1] Guangzhou Univ, Higher Educ Inst, Key Lab Math & Interdisciplinary Sci Guangdong, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangdong Univ Finance, Dept Appl Math, Guangzhou 510521, Guangdong, Peoples R China
[3] Hanshan Normal Univ, Dept Math & Stat, Chaozhou, Guangdong, Peoples R China
[4] Guangzhou Vocat Coll Sci & Technol, Guangzhou 510550, Guangdong, Peoples R China
基金
中国博士后科学基金;
关键词
Cubic minimization; Global optimality conditions; Quadratic underestimators; CONVEX UNDERESTIMATORS; OPTIMIZATION; BOX; POLYNOMIALS;
D O I
10.1007/s00186-015-0511-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we present global optimality conditions for cubic minimization involving cubic constraints and box or bivalent constraints, where the cubic objective function and cubic constraints contain no cross terms. By utilizing quadratic underestimators, we first derive sufficient global optimality conditions for a global minimizer of cubic minimization problems with cubic inequality and box constraints. Then we establish them for cubic minimization with cubic inequality and bivalent constraints. Finally, we establish sufficient and necessary global optimality condition for cubic minimization with cubic equality and binary constraints.
引用
收藏
页码:243 / 264
页数:22
相关论文
共 50 条
  • [1] Global optimality conditions for cubic minimization problems with cubic constraints
    Xue-Gang Zhou
    Xiao-Peng Yang
    Bing-Yuan Cao
    [J]. Mathematical Methods of Operations Research, 2015, 82 : 243 - 264
  • [2] Global optimality conditions for cubic minimization problem with box or binary constraints
    Wang, Yanjun
    Liang, Zhian
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2010, 47 (04) : 583 - 595
  • [3] Global optimality conditions for cubic minimization problem with box or binary constraints
    Yanjun Wang
    Zhian Liang
    [J]. Journal of Global Optimization, 2010, 47 : 583 - 595
  • [4] NEW GLOBAL OPTIMALITY CONDITIONS FOR CUBIC MINIMIZATION SUBJECT TO BOX OR BIVALENT CONSTRAINTS
    Zhou, Xue-Gang
    Cao, Bing-Yuan
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2012, 8 (03): : 631 - 647
  • [5] Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem
    Zhang, Xiaomei
    Wang, Yanjun
    Ma, Weimin
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [6] Global optimality conditions for nonconvex minimization problems with quadratic constraints
    Guoquan Li
    Zhiyou Wu
    Jing Quan
    [J]. Journal of Inequalities and Applications, 2015
  • [7] Global optimality conditions for nonconvex minimization problems with quadratic constraints
    Li, Guoquan
    Wu, Zhiyou
    Quan, Jing
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [8] Conditions for global optimality of quadratic minimization problems with lmi constraints
    Jeyakumar, Vaithilingam
    Wu, Zhiyou
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2007, 24 (02) : 149 - 160
  • [9] Global Sufficient Conditions for Nonconvex Cubic Minimization Problem with Box Constraints
    Wang, Yanjun
    Liang, Zhian
    Shen, Linsong
    [J]. ADVANCES IN GLOBAL OPTIMIZATION, 2015, 95 : 32 - 39
  • [10] Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions
    Jeyakumar, V.
    Rubinov, A. M.
    Wu, Z. Y.
    [J]. MATHEMATICAL PROGRAMMING, 2007, 110 (03) : 521 - 541