Direct Physical Imaging and Chemical Probing of LiFePO4 for Lithium-Ion Batteries

被引:42
|
作者
Chung, Sung-Yoon [1 ,2 ]
Kim, Young-Min [3 ]
Choi, Si-Young [4 ]
机构
[1] Inha Univ, Dept Mat Sci & Engn, Inchon 402751, South Korea
[2] Nalphates LLC, Wilmington, DE 19801 USA
[3] Korea Basic Sci Inst, Taejon 305333, South Korea
[4] Korea Inst Mat Sci, Chang Won 641831, South Korea
基金
新加坡国家研究基金会;
关键词
POSITIVE-ELECTRODE MATERIALS; SINGLE DIRAC CONE; ELECTROCHEMICAL PROPERTIES; CRYSTAL-NUCLEATION; PHOSPHO-OLIVINES; MISCIBILITY GAP; IRON PHOSPHATE; LI-ION; 43; K; TEMPERATURE;
D O I
10.1002/adfm.201000393
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The control of unexpectedly rapid Li intercalation reactions without structural instability in olivine-type LiFePO4 nanocrystals is one of the notable scientific advances and new findings attained in materials physics and chemistry during the past decade. A variety of scientific studies and technological investigations have been carried out with LiFePO4 to elucidate the origins of many peculiar physical aspects as well as to develop more effective synthetic processing techniques for better electrochemical performances. Among the several features of LiFePO4 that have attracted much interest, in this article we address four important issues-regarding doping of aliovalent cations, distribution of Fe-rich secondary metallic phases, nanoparticle formation during crystallization, and antisite Li/Fe partitioning-by means of straightforward atomic-scale imaging and chemical probing. The direct observations in the present study provide significant insight into alternative efficient approaches to obtain conductive LiFePO4 nanocrystals with controlled defect structures.
引用
收藏
页码:4219 / 4232
页数:14
相关论文
共 50 条
  • [1] LiFePO4 Mesocrystals for Lithium-Ion Batteries
    Popovic, Jelena
    Demir-Cakan, Rezan
    Tornow, Julian
    Morcrette, Mathieu
    Su, Dang Sheng
    Schloegl, Robert
    Antonietti, Markus
    Titirici, Maria-Magdalena
    SMALL, 2011, 7 (08) : 1127 - 1135
  • [2] LiFePO4/C nanocomposites for lithium-ion batteries
    Eftekhari, Ali
    JOURNAL OF POWER SOURCES, 2017, 343 : 395 - 411
  • [3] Thermal Modeling of Lithium-ion Batteries with LiFePO4 Electrodes
    Gwak, Geonhui
    Ju, Hyunchul
    2018 7TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), 2018, : 824 - 830
  • [4] Mesoporous LiFePO4 microspheres for rechargeable lithium-ion batteries
    Du, Juan
    Jiao, Lifang
    Wu, Qiong
    Liu, Yongchang
    Qi, Zhan
    Guo, Lijing
    Wang, Yijing
    Yuan, Huatang
    ELECTROCHIMICA ACTA, 2013, 98 : 288 - 293
  • [5] Direct regeneration of LiFePO4 cathode by inherent impurities in spent lithium-ion batteries
    Huang, Meiting
    Wang, Zhihao
    Yang, Haitao
    Yang, Liming
    Chen, Kechun
    Yu, Haoxuan
    Xu, Chenxi
    Guo, Yingying
    Shao, Penghui
    Chen, Liang
    Luo, Xubiao
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 679 : 586 - 597
  • [6] Physical and electrochemical properties of doped LiFePO4 as cathode material for lithium-ion batteries
    Yao, YX
    Duan, ZZ
    Li, YN
    Gu, HW
    Hua, ZQ
    Luan, WZ
    Wang, Y
    JOURNAL OF RARE EARTHS, 2004, 22 : 123 - 125
  • [7] Lithium-ion batteries based on titanium oxide nanotubes and LiFePO4
    Pier Paolo Prosini
    Cinzia Cento
    Alfonso Pozio
    Journal of Solid State Electrochemistry, 2014, 18 : 795 - 804
  • [8] Advances in new cathode material LiFePO4 for lithium-ion batteries
    Zhang, Yong
    Huo, Qing-yuan
    Du, Pei-pei
    Wang, Li-zhen
    Zhang, Ai-qin
    Song, Yan-hua
    Lv, Yan
    Li, Guang-yin
    SYNTHETIC METALS, 2012, 162 (13-14) : 1315 - 1326
  • [9] Effects of carbonaceous materials on the physical and electrochemical performance of a LiFePO4 cathode for lithium-ion batteries
    Kang Fei-yu
    Ma Jun
    Li Bao-hua
    NEW CARBON MATERIALS, 2011, 26 (03) : 161 - 170
  • [10] Zwitterionic polymer as binder for LiFePO4 cathodes in lithium-ion batteries
    Yang, Meng
    Rong, Zhuolin
    Li, Xuewei
    Yuan, Bing
    Zhang, Wangqing
    CHEMICAL ENGINEERING JOURNAL, 2025, 505