Direct Physical Imaging and Chemical Probing of LiFePO4 for Lithium-Ion Batteries

被引:42
|
作者
Chung, Sung-Yoon [1 ,2 ]
Kim, Young-Min [3 ]
Choi, Si-Young [4 ]
机构
[1] Inha Univ, Dept Mat Sci & Engn, Inchon 402751, South Korea
[2] Nalphates LLC, Wilmington, DE 19801 USA
[3] Korea Basic Sci Inst, Taejon 305333, South Korea
[4] Korea Inst Mat Sci, Chang Won 641831, South Korea
基金
新加坡国家研究基金会;
关键词
POSITIVE-ELECTRODE MATERIALS; SINGLE DIRAC CONE; ELECTROCHEMICAL PROPERTIES; CRYSTAL-NUCLEATION; PHOSPHO-OLIVINES; MISCIBILITY GAP; IRON PHOSPHATE; LI-ION; 43; K; TEMPERATURE;
D O I
10.1002/adfm.201000393
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The control of unexpectedly rapid Li intercalation reactions without structural instability in olivine-type LiFePO4 nanocrystals is one of the notable scientific advances and new findings attained in materials physics and chemistry during the past decade. A variety of scientific studies and technological investigations have been carried out with LiFePO4 to elucidate the origins of many peculiar physical aspects as well as to develop more effective synthetic processing techniques for better electrochemical performances. Among the several features of LiFePO4 that have attracted much interest, in this article we address four important issues-regarding doping of aliovalent cations, distribution of Fe-rich secondary metallic phases, nanoparticle formation during crystallization, and antisite Li/Fe partitioning-by means of straightforward atomic-scale imaging and chemical probing. The direct observations in the present study provide significant insight into alternative efficient approaches to obtain conductive LiFePO4 nanocrystals with controlled defect structures.
引用
收藏
页码:4219 / 4232
页数:14
相关论文
共 50 条
  • [31] Optimization of hydrothermally synthesized LiFePO4 nanoscaled particles for lithium-ion batteries
    Yuechun Qiao
    Hongxia Guo
    Guohua Liu
    Jingqing Gao
    Russian Journal of Electrochemistry, 2013, 49 : 466 - 469
  • [32] Effects of Carbon Precursors on LiFePO4/C Nanocomposites for Lithium-Ion Batteries
    Tan, Jiajia
    Tiwari, Ashutosh
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2011, 3 (04) : 487 - 490
  • [33] Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries
    Gao, Fei
    Tang, Zhiyuan
    ELECTROCHIMICA ACTA, 2008, 53 (15) : 5071 - 5075
  • [34] Enabling the sustainable recycling of LiFePO4 from spent lithium-ion batteries
    Qiu, Xuejing
    Zhang, Baichao
    Xu, Yunlong
    Hu, Jiugang
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Yang, Yue
    Sun, Wei
    Hu, Yuehua
    Cao, Xiaoyu
    Ji, Xiaobo
    GREEN CHEMISTRY, 2022, 24 (06) : 2506 - 2515
  • [35] Synthesis and modification of nanocrystalline LiFePO4 as a cathode material for lithium-ion batteries
    Li, Lingfang
    Han, Shaochang
    Fan, Changlin
    Bai, Yongmei
    Zhang, Kehe
    MATERIALS LETTERS, 2013, 108 : 156 - 159
  • [36] Electrochemical performance of LiFePO4 modified by pressure-pulsed chemical vapor infiltration in lithium-ion batteries
    Li, Jianling
    Suzuki, Tomohiro
    Naga, Kazuhisa
    Ohzawa, Yoshimi
    Nakajima, Tsuyoshi
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2007, 142 (2-3): : 86 - 92
  • [37] Optimization of preparing LiFePO4 for lithium-ion batteries via carbothermal reduction route
    Shuqing Yuan
    Kejie Dai
    Russian Journal of Electrochemistry, 2011, 47 : 1389 - 1393
  • [38] Effect of Vanadium Substitution on Electrochemical Performance of LiFePO4/C for Lithium-Ion Batteries
    Luo Liang
    Cao Yan-Bing
    Du Ke
    Peng Zhong-Dong
    Hu Guo-Rong
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2014, 30 (09) : 2000 - 2005
  • [39] Facile synthesis of nanostructured LiFePO4/C cathode material for lithium-ion batteries
    YANG ZhanXu1
    2 State Key Laboratory of Chemical Resource Engineering
    Science Bulletin, 2012, (32) : 4160 - 4163
  • [40] Novel synthesis route for LiFePO4/C cathode materials for lithium-ion batteries
    Liao, XZ
    Ma, ZF
    Wang, L
    Zhang, XM
    Jiang, Y
    He, YS
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (12) : A522 - A525