A reverse entropy power inequality for log-concave random vectors

被引:20
|
作者
Ball, Keith [1 ]
Nayar, Piotr [2 ]
Tkocz, Tomaz [1 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[2] Inst Math & Applicat, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
entropy; log-concave; reverse entropy power inequality; FISHER INFORMATION; SIMPLE PROOF; JUMPS;
D O I
10.4064/sm8418-6-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the exponent of the entropy of one-dimensional projections of a log-concave random vector defines a 1/5-seminorm. We make two conjectures concerning reverse entropy power inequalities in the log-concave setting and discuss some examples.
引用
收藏
页码:17 / 30
页数:14
相关论文
共 50 条
  • [1] Wasserstein Stability of the Entropy Power Inequality for Log-Concave Random Vectors
    Courtade, Thomas A.
    Fathi, Max
    Pananjady, Ashwin
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 659 - 663
  • [3] An Inequality for Moments of Log-Concave Functions on Gaussian Random Vectors
    Dafnis, Nikos
    Paouris, Grigoris
    [J]. GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS, 2017, 2169 : 107 - 122
  • [4] A Renyi entropy power inequality for log-concave vectors and parameters in [0,1]
    Marsiglietti, Arnaud
    Melbourne, James
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 1964 - 1968
  • [5] Entropy jumps for isotropic log-concave random vectors and spectral gap
    Ball, Keith
    Van Hang Nguyen
    [J]. STUDIA MATHEMATICA, 2012, 213 (01) : 81 - 96
  • [6] A Lower Bound on the Differential Entropy of Log-Concave Random Vectors with Applications
    Marsiglietti, Arnaud
    Kostina, Victoria
    [J]. ENTROPY, 2018, 20 (03)
  • [7] Entropy and Information jump for log-concave vectors
    Bizeul, Pierre
    [J]. COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 487 - 493
  • [8] A Reverse Rogers–Shephard Inequality for Log-Concave Functions
    David Alonso-Gutiérrez
    [J]. The Journal of Geometric Analysis, 2019, 29 : 299 - 315
  • [9] Norms of weighted sums of log-concave random vectors
    Chasapis, Giorgos
    Giannopoulos, Apostolos
    Skarmogiannis, Nikos
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (04)
  • [10] On Some Problems Concerning Log-Concave Random Vectors
    Latala, Rafal
    [J]. CONVEXITY AND CONCENTRATION, 2017, 161 : 525 - 539