A reverse entropy power inequality for log-concave random vectors

被引:20
|
作者
Ball, Keith [1 ]
Nayar, Piotr [2 ]
Tkocz, Tomaz [1 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[2] Inst Math & Applicat, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
entropy; log-concave; reverse entropy power inequality; FISHER INFORMATION; SIMPLE PROOF; JUMPS;
D O I
10.4064/sm8418-6-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the exponent of the entropy of one-dimensional projections of a log-concave random vector defines a 1/5-seminorm. We make two conjectures concerning reverse entropy power inequalities in the log-concave setting and discuss some examples.
引用
下载
收藏
页码:17 / 30
页数:14
相关论文
共 50 条