An Inequality for Moments of Log-Concave Functions on Gaussian Random Vectors

被引:0
|
作者
Dafnis, Nikos [1 ]
Paouris, Grigoris [2 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
来源
关键词
SOBOLEV INEQUALITIES; BRASCAMP-LIEB; STABILITY;
D O I
10.1007/978-3-319-45282-1_7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove sharp moment inequalities for log-concave and log-convex functions, on Gaussian random vectors. As an application we take a reverse form of the classical logarithmic Sobolev inequality, in the case where the function is log-concave.
引用
收藏
页码:107 / 122
页数:16
相关论文
共 50 条
  • [1] A reverse entropy power inequality for log-concave random vectors
    Ball, Keith
    Nayar, Piotr
    Tkocz, Tomaz
    STUDIA MATHEMATICA, 2016, 235 (01) : 17 - 30
  • [2] Wasserstein Stability of the Entropy Power Inequality for Log-Concave Random Vectors
    Courtade, Thomas A.
    Fathi, Max
    Pananjady, Ashwin
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 659 - 663
  • [3] Hadamard"s inequality for log-concave functions
    Fink, AM
    MATHEMATICAL AND COMPUTER MODELLING, 2000, 32 (5-6) : 625 - 629
  • [4] Zhang's Inequality for Log-Concave Functions
    Alonso-Gutierrez, David
    Bernues, Julio
    Gonzalez Merino, Bernardo
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2017-2019, VOL I, 2020, 2256 : 29 - 48
  • [5] Norms of weighted sums of log-concave random vectors
    Chasapis, Giorgos
    Giannopoulos, Apostolos
    Skarmogiannis, Nikos
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (04)
  • [6] On Some Problems Concerning Log-Concave Random Vectors
    Latala, Rafal
    CONVEXITY AND CONCENTRATION, 2017, 161 : 525 - 539
  • [7] A Reverse Rogers–Shephard Inequality for Log-Concave Functions
    David Alonso-Gutiérrez
    The Journal of Geometric Analysis, 2019, 29 : 299 - 315
  • [8] Grunbaum-type inequality for log-concave functions
    Meyer, Mathieu
    Nazarov, Fedor
    Ryabogin, Dmitry
    Yaskin, Vladyslav
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (04) : 745 - 752
  • [9] Rogers-Shephard inequality for log-concave functions
    Alonso-Gutierrez, David
    Merino, Bernardo Gonzalez
    Hugo Jimenez, C.
    Villa, Rafael
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (11) : 3269 - 3299
  • [10] Log-Concave Functions
    Colesanti, Andrea
    CONVEXITY AND CONCENTRATION, 2017, 161 : 487 - 524