Deep Reinforcement Learning for Semiconductor Production Scheduling

被引:0
|
作者
Waschneck, Bernd [1 ]
Reichstaller, Andre [2 ]
Belzner, Lenz [3 ]
Altenmueller, Thomas [4 ]
Bauernhansl, Thomas [5 ]
Knapp, Alexander [2 ]
Kyek, Andreas [4 ]
机构
[1] Univ Stuttgart, GSaME, Nobelstr 12, D-70569 Stuttgart, Germany
[2] Univ Augsburg, Inst Software & Syst Engn, Augsburg, Germany
[3] Lenz Belzner AI Consulting, Munich, Germany
[4] Infineon Technol AG, Campeon 1-12, D-85579 Neubiberg, Germany
[5] Fraunhofer Inst Mfg Engn & Automat IPA, Nobelstr 12, D-70569 Stuttgart, Germany
关键词
Production Scheduling; Reinforcement Learning; Machine Learning; Semiconductor Manufacturing;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Despite producing tremendous success stories by identifying cat videos [1] or solving computer as well as board games [2], [3], the adoption of deep learning in the semiconductor industry is moderatre. In this paper, we apply Google DeepMind's Deep Q Network (DQN) agent algorithm for Reinforcement Learning (RL) to semiconductor production scheduling. In an RL environment several cooperative DQN agents, which utilize deep neural networks, are trained with flexible user-defined objectives. We show benchmarks comparing standard dispatching heuristics with the DQN agents in an abstract frontend-of-line semiconductor production facility. Results are promising and show that DQN agents optimize production autonomously for different targets.
引用
收藏
页码:301 / 306
页数:6
相关论文
共 50 条
  • [31] Adaptive DAG Tasks Scheduling with Deep Reinforcement Learning
    Wu, Qing
    Wu, Zhiwei
    Zhuang, Yuehui
    Cheng, Yuxia
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2018, PT II, 2018, 11335 : 477 - 490
  • [32] Beam Hopping Scheduling Based on Deep Reinforcement Learning
    Deng, Huimin
    Ying, Kai
    Gui, Lin
    2023 INTERNATIONAL CONFERENCE ON FUTURE COMMUNICATIONS AND NETWORKS, FCN, 2023,
  • [33] Decentralized Scheduling for Cooperative Localization With Deep Reinforcement Learning
    Peng, Bile
    Seco-Granados, Gonzalo
    Steinmetz, Erik
    Frohle, Markus
    Wymeersch, Henk
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (05) : 4295 - 4305
  • [34] Assessing the value of deep reinforcement learning for irrigation scheduling
    Kelly, T. D.
    Foster, T.
    Schultz, David M.
    SMART AGRICULTURAL TECHNOLOGY, 2024, 7
  • [35] Task Scheduling in Cloud Using Deep Reinforcement Learning
    Swarup, Shashank
    Shakshuki, Elhadi M.
    Yasar, Ansar
    12TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 4TH INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS, 2021, 184 : 42 - 51
  • [36] Geometric deep reinforcement learning for dynamic DAG scheduling
    Grinsztajn, Nathan
    Beaumont, Olivier
    Jeannot, Emmanuel
    Preux, Philippe
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 258 - 265
  • [37] Multi-path Scheduling with Deep Reinforcement Learning
    Molla Rosello, Marc
    2019 EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS (EUCNC), 2019, : 400 - 405
  • [38] DEEP REINFORCEMENT LEARNING-BASED IRRIGATION SCHEDULING
    Yang, Y.
    Hu, J.
    Porter, D.
    Marek, T.
    Heflin, K.
    Kong, H.
    Sun, L.
    TRANSACTIONS OF THE ASABE, 2020, 63 (03) : 549 - 556
  • [39] Teleconsultation dynamic scheduling with a deep reinforcement learning approach
    Chen, Wenjia
    Li, Jinlin
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 149
  • [40] Scheduling conditional task graphs with deep reinforcement learning
    Debner, Anton
    Krahn, Maximilian
    Hirvisalo, Vesa
    NORTHERN LIGHTS DEEP LEARNING CONFERENCE, VOL 233, 2024, 233 : 46 - 52