Deep Reinforcement Learning for Semiconductor Production Scheduling

被引:0
|
作者
Waschneck, Bernd [1 ]
Reichstaller, Andre [2 ]
Belzner, Lenz [3 ]
Altenmueller, Thomas [4 ]
Bauernhansl, Thomas [5 ]
Knapp, Alexander [2 ]
Kyek, Andreas [4 ]
机构
[1] Univ Stuttgart, GSaME, Nobelstr 12, D-70569 Stuttgart, Germany
[2] Univ Augsburg, Inst Software & Syst Engn, Augsburg, Germany
[3] Lenz Belzner AI Consulting, Munich, Germany
[4] Infineon Technol AG, Campeon 1-12, D-85579 Neubiberg, Germany
[5] Fraunhofer Inst Mfg Engn & Automat IPA, Nobelstr 12, D-70569 Stuttgart, Germany
关键词
Production Scheduling; Reinforcement Learning; Machine Learning; Semiconductor Manufacturing;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Despite producing tremendous success stories by identifying cat videos [1] or solving computer as well as board games [2], [3], the adoption of deep learning in the semiconductor industry is moderatre. In this paper, we apply Google DeepMind's Deep Q Network (DQN) agent algorithm for Reinforcement Learning (RL) to semiconductor production scheduling. In an RL environment several cooperative DQN agents, which utilize deep neural networks, are trained with flexible user-defined objectives. We show benchmarks comparing standard dispatching heuristics with the DQN agents in an abstract frontend-of-line semiconductor production facility. Results are promising and show that DQN agents optimize production autonomously for different targets.
引用
下载
收藏
页码:301 / 306
页数:6
相关论文
共 50 条
  • [21] Scheduling the NASA Deep Space Network with Deep Reinforcement Learning
    Goh, Edwin
    Venkataram, Hamsa Shwetha
    Hoffmann, Mark
    Johnston, Mark D.
    Wilson, Brian
    2021 IEEE AEROSPACE CONFERENCE (AEROCONF 2021), 2021,
  • [22] Robust-optimization-guiding deep reinforcement learning for chemical material production scheduling
    Lee, Chia -Yen
    Huang, Yi-Tao
    Chen, Peng-Jen
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 187
  • [23] Production Scheduling based on Deep Reinforcement Learning using Graph Convolutional Neural Network
    Seito, Takanari
    Munakata, Satoshi
    ICAART: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2, 2020, : 766 - 772
  • [24] Cloud Resource Scheduling With Deep Reinforcement Learning and Imitation Learning
    Guo, Wenxia
    Tian, Wenhong
    Ye, Yufei
    Xu, Lingxiao
    Wu, Kui
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (05): : 3576 - 3586
  • [25] A Reinforcement Learning Approach to Robust Scheduling of Semiconductor Manufacturing Facilities
    Park, In-Beom
    Huh, Jaeseok
    Kim, Joongkyun
    Park, Jonghun
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (03) : 1420 - 1431
  • [26] Dynamic VNF Scheduling: A Deep Reinforcement Learning Approach
    Zhang, Zixiao
    He, Fujun
    Oki, Eiji
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2023, E106B (07) : 557 - 570
  • [27] Data Centers Job Scheduling with Deep Reinforcement Learning
    Liang, Sisheng
    Yang, Zhou
    Jin, Fang
    Chen, Yong
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2020, PT II, 2020, 12085 : 906 - 917
  • [28] Efficient Scheduling of Data Augmentation for Deep Reinforcement Learning
    Ko, Byungchan
    Ok, Jungseul
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [29] A framework for scheduling in cloud manufacturing with deep reinforcement learning
    Liu, Yongkui
    Zhang, Lin
    Wang, Lihui
    Xiao, Yingying
    Xu, Xun
    Wang, Mei
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 1775 - 1780
  • [30] Cellular Network Traffic Scheduling with Deep Reinforcement Learning
    Chinchali, Sandeep
    Hu, Pan
    Chu, Tianshu
    Sharma, Manu
    Bansal, Manu
    Misra, Rakesh
    Pavone, Marco
    Katti, Sachin
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 766 - 774