Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage

被引:3385
|
作者
Komor, Alexis C. [1 ,2 ]
Kim, Yongjoo B. [1 ,2 ]
Packer, Michael S. [1 ,2 ]
Zuris, John A. [1 ,2 ]
Liu, David R. [1 ,2 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, Howard Hughes Med Inst, Cambridge, MA 02138 USA
基金
加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
CRISPR-CAS9; NUCLEASES; ENZYME APOBEC1; ENDONUCLEASE; PROTEINS;
D O I
10.1038/nature17946
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Current genome-editing technologies introduce double-stranded (ds) DNA breaks at a target locus as the first step to gene correction1,2. Although most genetic diseases arise from point mutations, current approaches to point mutation correction are inefficient and typically induce an abundance of random insertions and deletions (indels) at the target locus resulting from the cellular response to dsDNA breaks(1,2). Here we report the development of 'base editing', a new approach to genome editing that enables the direct, irreversible conversion of one target DNA base into another in a programmable manner, without requiring dsDNA backbone cleavage or a donor template. We engineered fusions of CRISPR/Cas9 and a cytidine deaminase enzyme that retain the ability to be programmed with a guide RNA, do not induce dsDNA breaks, and mediate the direct conversion of cytidine to uridine, thereby effecting a C -> T (or G -> A) substitution. The resulting 'base editors' convert cytidines within a window of approximately five nucleotides, and can efficiently correct a variety of point mutations relevant to human disease. In four transformed human and murine cell lines, second-and third-generation base editors that fuse uracil glycosylase inhibitor, and that use a Cas9 nickase targeting the non-edited strand, manipulate the cellular DNA repair response to favour desired base-editing outcomes, resulting in permanent correction of similar to 15-75% of total cellular DNA with minimal (typically <= 1%) indel formation. Base editing expands the scope and efficiency of genome editing of point mutations.
引用
收藏
页码:420 / +
页数:17
相关论文
共 50 条
  • [41] Nonlinear waves in double-stranded DNA
    Natalia L. Komarova
    Avy Soffera
    [J]. Bulletin of Mathematical Biology, 2005, 67 : 701 - 718
  • [42] Cytoplasmic double-stranded DNA sensor
    Mitsutoshi Yoneyama
    Takashi Fujita
    [J]. Nature Immunology, 2007, 8 : 907 - 908
  • [43] STRUCTURE OF DOUBLE-STRANDED DNA AND RNA
    ERLANDER, SR
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1973, (AUG26): : 132 - 132
  • [44] Cytoplasmic double-stranded DNA sensor
    Yoneyama, Mitsutoshi
    Fujita, Takashi
    [J]. NATURE IMMUNOLOGY, 2007, 8 (09) : 907 - 908
  • [45] REPLICATION OF DOUBLE-STRANDED DNA IN VIVO
    KUBITSCH.HE
    HENDERSO.TR
    [J]. RADIATION RESEARCH, 1966, S : 216 - &
  • [46] Nonlinear waves in double-stranded DNA
    Komarova, NL
    Soffer, A
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2005, 67 (04) : 701 - 718
  • [47] Bubble dynamics in double-stranded DNA
    Altan-Bonnet, G
    Libchaber, A
    Krichevsky, O
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (13)
  • [48] Reversible photopadlocking on double-stranded DNA
    Fujimoto, Kenzo
    Matsuda, Shigeo
    Yoshimura, Yoshinaga
    Ami, Takehiro
    Saito, Isao
    [J]. CHEMICAL COMMUNICATIONS, 2007, (28) : 2968 - 2970
  • [49] MULTIPLE MUTATIONS ON DOUBLE-STRANDED DNA
    朱榴琴
    申同健
    [J]. Science Bulletin, 1990, (20) : 1729 - 1733
  • [50] Shear unzipping of double-stranded DNA
    Prakash, Shikha
    Singh, Yashwant
    [J]. PHYSICAL REVIEW E, 2011, 84 (03):