Multi-view discriminative sequential learning

被引:0
|
作者
Brefeld, U [1 ]
Büscher, C [1 ]
Scheffer, T [1 ]
机构
[1] Humboldt Univ, Dept Comp Sci, D-10099 Berlin, Germany
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Discriminative learning techniques for sequential data have proven to be more effective than generative models for named entity recognition, information extraction, and other tasks of discrimination. However, semi-supervised learning mechanisms that utilize inexpensive unlabeled sequences in addition to few labeled sequences - such as the Baum-Welch algorithm - are available only for generative models. The multi-view approach is based on the principle of maximizing the consensus among multiple independent hypotheses; we develop this principle into a semi-supervised hidden Markov perceptron, and a semi-supervised hidden Markov support vector learning algorithm. Experiments reveal that the resulting procedures utilize unlabeled data effectively and discriminate more accurately than their purely supervised counterparts.
引用
收藏
页码:60 / 71
页数:12
相关论文
共 50 条
  • [41] Extended Discriminative Random Walk: A Hypergraph Approach to Multi-View Multi-Relational Transductive Learning
    Satchidanand, Sai Nageswar
    Ananthapadmanaban, Harini
    Ravindran, Balaraman
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 3791 - 3797
  • [42] Contrastive Multi-view Interest Learning for Cross-domain Sequential Recommendation
    Zang, Tianzi
    Zhu, Yanmin
    Zhang, Ruohan
    Wang, Chunyang
    Wang, Ke
    Yu, Jiadi
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (03)
  • [43] Multi-View Multi-Instance Learning Based on Joint Sparse Representation and Multi-View Dictionary Learning
    Li, Bing
    Yuan, Chunfeng
    Xiong, Weihua
    Hu, Weiming
    Peng, Houwen
    Ding, Xinmiao
    Maybank, Steve
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2554 - 2560
  • [44] Sparse regularized discriminative canonical correlation analysis for multi-view semi-supervised learning
    Shudong Hou
    Heng Liu
    Quansen Sun
    Neural Computing and Applications, 2019, 31 : 7351 - 7359
  • [45] Learning discriminative hashing codes for cross-modal retrieval based on multi-view features
    Jun Yu
    Xiao-Jun Wu
    Josef Kittler
    Pattern Analysis and Applications, 2020, 23 : 1421 - 1438
  • [46] Sparse regularized discriminative canonical correlation analysis for multi-view semi-supervised learning
    Hou, Shudong
    Liu, Heng
    Sun, Quansen
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (11): : 7351 - 7359
  • [47] Adaptive-weighting discriminative regression for multi-view classification
    Yang, Muli
    Deng, Cheng
    Nie, Feiping
    PATTERN RECOGNITION, 2019, 88 : 236 - 245
  • [48] Multi-View Latent Variable Discriminative Models For Action Recognition
    Song, Yale
    Morency, Louis-Philippe
    Davis, Randall
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 2120 - 2127
  • [49] Discriminative Deep Generalized Dependency Analysis for Multi-View Data
    Kumar D.
    Maji P.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (04): : 1857 - 1868
  • [50] Learning discriminative hashing codes for cross-modal retrieval based on multi-view features
    Yu, Jun
    Wu, Xiao-Jun
    Kittler, Josef
    PATTERN ANALYSIS AND APPLICATIONS, 2020, 23 (03) : 1421 - 1438