Multi-view discriminative sequential learning

被引:0
|
作者
Brefeld, U [1 ]
Büscher, C [1 ]
Scheffer, T [1 ]
机构
[1] Humboldt Univ, Dept Comp Sci, D-10099 Berlin, Germany
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Discriminative learning techniques for sequential data have proven to be more effective than generative models for named entity recognition, information extraction, and other tasks of discrimination. However, semi-supervised learning mechanisms that utilize inexpensive unlabeled sequences in addition to few labeled sequences - such as the Baum-Welch algorithm - are available only for generative models. The multi-view approach is based on the principle of maximizing the consensus among multiple independent hypotheses; we develop this principle into a semi-supervised hidden Markov perceptron, and a semi-supervised hidden Markov support vector learning algorithm. Experiments reveal that the resulting procedures utilize unlabeled data effectively and discriminate more accurately than their purely supervised counterparts.
引用
收藏
页码:60 / 71
页数:12
相关论文
共 50 条
  • [31] Multi-view discriminative and structured dictionary learning with group sparsity for human action recognition
    Gao, Z.
    Zhang, H.
    Xu, G. P.
    Xue, Y. B.
    Hauptmann, A. G.
    SIGNAL PROCESSING, 2015, 112 : 83 - 97
  • [32] Multi-view Robust Discriminative Feature Learning for Remote Sensing Image with Noisy Labels
    Jinyong Chen
    Guisheng Yin
    Kang Sun
    Yuxin Dong
    Mobile Networks and Applications, 2022, 27 : 2487 - 2505
  • [33] Multi-view Discriminative Learning via Joint Non-negative Matrix Factorization
    Zhang, Zhong
    Qin, Zhili
    Li, Peiyan
    Yang, Qinli
    Shao, Junming
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2018), PT II, 2018, 10828 : 542 - 557
  • [34] Multi-view Robust Discriminative Feature Learning for Remote Sensing Image with Noisy Labels
    Chen, Jinyong
    Yin, Guisheng
    Sun, Kang
    Dong, Yuxin
    MOBILE NETWORKS & APPLICATIONS, 2022, 27 (06): : 2487 - 2505
  • [35] Low-rank constrained weighted discriminative regression for multi-view feature learning
    Zhang, Chao
    Li, Huaxiong
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2021, 6 (04) : 471 - 479
  • [36] Unsupervised Multi-view Learning
    Huang, Ling
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 6442 - 6443
  • [37] A review on multi-view learning
    Zhiwen Yu
    Ziyang Dong
    Chenchen Yu
    Kaixiang Yang
    Ziwei Fan
    C. L. Philip Chen
    Yu, Zhiwen (zhwyu@scut.edu.cn), 2025, 19 (07)
  • [38] Multi-View Reinforcement Learning
    Li, Minne
    Wu, Lisheng
    Ammar, Haitham Bou
    Wang, Jun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [39] Multi-view learning with Universum
    Wang, Zhe
    Zhu, Yujin
    Liu, Wenwen
    Chen, Zhihua
    Gao, Daqi
    KNOWLEDGE-BASED SYSTEMS, 2014, 70 : 376 - 391
  • [40] Towards Discriminative Representation: Multi-view Trajectory Contrastive Learning for Online Multi-object Tracking
    Yu, En
    Li, Zhuoling
    Han, Shoudong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8824 - 8833