NUCLEI SEGMENTATION OF FLUORESCENCE MICROSCOPY IMAGES BASED ON MIDPOINT ANALYSIS AND MARKED POINT PROCESS

被引:0
|
作者
Gadgil, Neeraj J. [1 ]
Salama, Paul [2 ]
Dunn, Kenneth W. [3 ]
Delp, Edward J. [1 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, Video & Image Proc Lab, W Lafayette, IN 47907 USA
[2] Indiana Univ Purdue Univ, Dept Elect & Comp Engn, Indianapolis, IN 46202 USA
[3] Indiana Univ, Sch Med, Div Nephrol, Indianapolis, IN USA
关键词
biomedical image segmentation; marked point process; fluorescence microscopy; 2-PHOTON MICROSCOPY; EXTRACTION; ALGORITHM; DYNAMICS; KIDNEY; SPACES; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microscope image analysis is challenging because of non-uniform brightness, decreasing image contrast with tissue depth, poor edge details and irregular and unknown structures. In this paper, we present a nuclei segmentation and counting method using midpoint analysis, shape-based function optimization and a MPP simulation with a spatial birth-death process. Preliminary results demonstrate efficacy of the proposed method.
引用
收藏
页码:37 / 40
页数:4
相关论文
共 50 条
  • [21] On Benchmarking Cell Nuclei Segmentation Algorithms for Fluorescence Microscopy
    Wirth, Frederike
    Brinkmann, Eva-Maria
    Brinker, Klaus
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 2: BIOIMAGING, 2020, : 164 - 171
  • [22] A region-based convolutional network for nuclei detection and segmentation in microscopy images
    Liang, Hao
    Cheng, Zhiming
    Zhong, Haiqin
    Qu, Aiping
    Chen, Lingna
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [23] Application of convolutional neural networks towards nuclei segmentation in localization-based super-resolution fluorescence microscopy images
    Mela, Christopher A.
    Liu, Yang
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [24] Application of convolutional neural networks towards nuclei segmentation in localization-based super-resolution fluorescence microscopy images
    Christopher A. Mela
    Yang Liu
    BMC Bioinformatics, 22
  • [25] Segmentation and Quantitative Analysis of Normal and Apoptotic Cells from Fluorescence Microscopy Images
    Du, Yuncheng
    Budman, Hector M.
    Duever, Thomas A.
    IFAC PAPERSONLINE, 2016, 49 (07): : 603 - 608
  • [26] Segmentation of cell nuclei in fluorescence microscopy images: An integrated framework using level set segmentation and touching-cell splitting
    Gharipour, Amin
    Liew, Alan Wee-Chung
    PATTERN RECOGNITION, 2016, 58 : 1 - 11
  • [27] Comparison of Segmentation Algorithms For Fluorescence Microscopy Images of Cells
    Dima, Alden A.
    Elliott, John T.
    Filliben, James J.
    Halter, Michael
    Peskin, Adele
    Bernal, Javier
    Kociolek, Marcin
    Brady, Mary C.
    Tang, Hai C.
    Plant, Anne L.
    CYTOMETRY PART A, 2011, 79A (07) : 545 - 559
  • [28] A SEGMENTATION FRAMEWORK FOR PHASE CONTRAST AND FLUORESCENCE MICROSCOPY IMAGES
    Alioscha-Perez, Mitchel
    Willaert, Ronnie
    Sahli, Hichem
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2014, 28 (07)
  • [29] Marked point process in image analysis
    Descombes, X
    Zerubia, J
    IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (05) : 77 - 84
  • [30] Fast automatic segmentation of nuclei in microscopy images of tissue sections
    Laurain, V.
    Ramoser, H.
    Nowak, C.
    Steiner, G. E.
    Ecker, R.
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 3367 - 3370