Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube

被引:88
|
作者
Cha, SN [1 ]
Jang, JE
Choi, Y
Amaratunga, GAJ
Kang, DJ
Hasko, DG
Jung, JE
Kim, JM
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea
[3] Univ Cambridge, Nanosci Ctr, Cambridge CB3 0FF, England
[4] Univ Cambridge, Cavendish Labs, Microelect Res Ctr, Cambridge CB3 0HE, England
[5] Samsung Adv Inst Technol, FED Project Team, Suwon 440600, South Korea
关键词
Benzene - Carbon nanotubes - Electric resistance - Electric switches - Electrodes - Electron beam lithography - Electrostatics - Gates (transistor) - Polymethyl methacrylates - Scanning electron microscopy - Silica - Silicon wafers - Voltage control;
D O I
10.1063/1.1868064
中图分类号
O59 [应用物理学];
学科分类号
摘要
Fabrication and characterization of a nanoelectromechanical switching device consisting of a suspended multiwalled carbon nanotube and self-aligned electrodes is reported. The device has a triode structure and is designed so that a suspended carbon nanotube is mechanically switched to one of two self-aligned electrodes by repulsive electrostatic forces between the nanotube and the other self-aligned electrode. Carbon nanotubes are dispersed on an SiO2 coated Si wafer and their locations recorded using a scanning electron microscope mapping process. Contact electrodes and self-aligned deflection electrodes are formed by a process comprising electron beam lithography, metallic thin film deposition, and lift-off. The electrical measurements show well-defined ON and OFF states with change of gate voltage. The measured threshold voltage for electromechanical switching is similar to 3.6 V. (c) 2005 American Institute of Physics.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 50 条
  • [1] Capacitive nanoelectromechanical switch based on suspended carbon nanotube array
    Acquaviva, D.
    Arun, A.
    Esconjauregui, S.
    Bouvet, D.
    Robertson, J.
    Smajda, R.
    Magrez, A.
    Forro, L.
    Ionescu, A. M.
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (23)
  • [2] Nanoelectromechanical Switch Devices Based on Graphene and Carbon Nanotube (CNT)
    Zulkefli, Mohd Amir
    Mohamed, Mohd Ambri
    Slow, Kim S.
    YeopMajlis, Burhanuddin
    [J]. SAINS MALAYSIANA, 2018, 47 (03): : 619 - 633
  • [3] Fabrication of a nanoelectromechanical bistable switch using directed assembly of SWCNTs
    Abbasi, Salman A.
    Kim, Tae-hoon
    Somu, Sivasubramanian
    Wang, Hailong
    Chai, Zhimin
    Upmanyu, Moneesh
    Busnaina, Ahmed
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (23)
  • [4] Fabrication and characterisation of suspended carbon nanotube devices in liquid
    Artyukhin, Alexander B.
    Stadermann, Michael
    Stroeve, Pieter
    Bakajin, Olgica
    Noy, Aleksandr
    [J]. INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2008, 5 (4-5) : 488 - 496
  • [5] Nanoelectromechanical carbon nanotube memory analysis
    Kang, Jeong Won
    Kwon, O. K.
    Lee, Jun Ha
    Lee, Hoong Joo
    Song, Young-Jin
    Yoon, Young-Sik
    Hwang, Ho Jung
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 33 (01): : 41 - 49
  • [6] Carbon nanotube based nanoelectromechanical systems
    Zheng, Quan-shui
    Xu, Zhi-ping
    Chen, Guan-hua
    Jiang, Qing
    [J]. PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2007, : 109 - 109
  • [7] Facile fabrication of suspended as-grown carbon nanotube devices
    Sangwan, V. K.
    Ballarotto, V. W.
    Fuhrer, M. S.
    Williams, E. D.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (11)
  • [8] Carbon-nanotuble-based nanoelectromechanical switch
    Kang, JW
    Byun, KR
    Song, KO
    Hwang, HJ
    [J]. DEVICE AND PROCESS TECHNOLOGIES FOR MICROELECTRONICS, MEMS, AND PHOTONICS IV, 2006, 6037
  • [9] First all-nanotube electromechanical switch NANOELECTROMECHANICAL SYSTEMS
    Telford, Mark
    [J]. MATERIALS TODAY, 2005, 8 (12) : 14 - 14
  • [10] Performance gain through dynamic control of device geometry:: Nanoelectromechanical carbon nanotube-based switch
    Engstrom, K. E.
    Kinaret, J. M.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2006, 27 (12) : 988 - 991