3-Regular digraphs with optimum skew energy

被引:36
|
作者
Gong, Shi-Cai [1 ]
Xu, Guang-Hui [1 ]
机构
[1] Zhejiang A&F Univ, Sch Sci, Hangzhou 311300, Zhejiang, Peoples R China
关键词
Digraph; Adjacency matrix; Skew-adjacency matrix; Energy; Skew energy; WEIGHING MATRICES; GRAPHS;
D O I
10.1016/j.laa.2011.03.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The skew energy of a digraph D is defined as the sum of the singular values of its skew adjacency matrix S(D). In this paper, we first interpret the entries of the power of the skew adjacency matrix of a digraph in terms of the number of its walks and then focus on the question posed by Adiga et al. [C. Adiga, R. Balakrishnan, Wasin So, The skew energy of a graph, Linear Algebra Appl. 432 (2010) 1825-1835] of determining all 3-regular connected digraphs with optimum skew energy. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:465 / 471
页数:7
相关论文
共 50 条
  • [41] Largest 2-Regular Subgraphs in 3-Regular Graphs
    Choi, Ilkyoo
    Kim, Ringi
    Kostochka, Alexandr V.
    Park, Boram
    West, Douglas B.
    GRAPHS AND COMBINATORICS, 2019, 35 (04) : 805 - 813
  • [42] 3-regular graphs are 2-reconstructible
    Kostochka, Alexandr, V
    Nahvi, Mina
    West, Douglas B.
    Zirlin, Dara
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 91
  • [43] Largest 2-Regular Subgraphs in 3-Regular Graphs
    Ilkyoo Choi
    Ringi Kim
    Alexandr V. Kostochka
    Boram Park
    Douglas B. West
    Graphs and Combinatorics, 2019, 35 : 805 - 813
  • [44] Optimum skew energy of a tournament
    Guo, Lifeng
    Wang, Ligong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 530 : 405 - 413
  • [45] DENSE GRAPHS WITHOUT 3-REGULAR SUBGRAPHS
    PYBER, L
    RODL, V
    SZEMEREDI, E
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (01) : 41 - 54
  • [46] 3-Regular Colored Graphs and Classification of Surfaces
    Biplab Basak
    Discrete & Computational Geometry, 2017, 58 : 345 - 354
  • [47] On 4-ordered 3-regular graphs
    Tsai, Ming
    Tsai, Tsung-Han
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (5-6) : 1613 - 1619
  • [48] 3-Regular Colored Graphs and Classification of Surfaces
    Basak, Biplab
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (02) : 345 - 354
  • [49] On the minimum bisection of random 3-regular graphs
    Lichev, Lyuben
    Mitsche, Dieter
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (02):
  • [50] THE MAXIMUM GENUS OF A 3-REGULAR SIMPLICIAL GRAPH
    Li Deming\ Liu Yanpei
    AppliedMathematics:AJournalofChineseUniversities, 1999, (02) : 81 - 92