3-Regular digraphs with optimum skew energy

被引:36
|
作者
Gong, Shi-Cai [1 ]
Xu, Guang-Hui [1 ]
机构
[1] Zhejiang A&F Univ, Sch Sci, Hangzhou 311300, Zhejiang, Peoples R China
关键词
Digraph; Adjacency matrix; Skew-adjacency matrix; Energy; Skew energy; WEIGHING MATRICES; GRAPHS;
D O I
10.1016/j.laa.2011.03.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The skew energy of a digraph D is defined as the sum of the singular values of its skew adjacency matrix S(D). In this paper, we first interpret the entries of the power of the skew adjacency matrix of a digraph in terms of the number of its walks and then focus on the question posed by Adiga et al. [C. Adiga, R. Balakrishnan, Wasin So, The skew energy of a graph, Linear Algebra Appl. 432 (2010) 1825-1835] of determining all 3-regular connected digraphs with optimum skew energy. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:465 / 471
页数:7
相关论文
共 50 条
  • [21] On skew Laplacian spectrum and energy of digraphs
    Ganie, Hilal A.
    Pirzada, S.
    Chat, Bilal A.
    Li, X.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (04)
  • [22] Almost 3-regular overpartitions
    Cristina Ballantine
    Mircea Merca
    The Ramanujan Journal, 2022, 58 : 957 - 971
  • [23] 3-REGULAR PARTS OF 4-REGULAR GRAPHS
    TASHKINOV, VA
    MATHEMATICAL NOTES, 1984, 36 (1-2) : 612 - 623
  • [24] On 3-Regular Partitions in 3-Colors
    D. S. Gireesh
    M. S. Mahadeva Naika
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 137 - 148
  • [25] 3-REGULAR SUBGRAPHS OF 4-REGULAR GRAPHS
    CHVATAL, V
    FLEISCHNER, H
    SHEEHAN, J
    THOMASSEN, C
    JOURNAL OF GRAPH THEORY, 1979, 3 (04) : 371 - 386
  • [26] ISOMORPHIC FACTORIZATION OF REGULAR GRAPHS AND 3-REGULAR MULTIGRAPHS
    ELLINGHAM, MN
    WORMALD, NC
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1988, 37 : 14 - 24
  • [27] 3-REGULAR PATH PAIRABLE GRAPHS
    FAUDREE, RJ
    GYARFAS, A
    LEHEL, J
    GRAPHS AND COMBINATORICS, 1992, 8 (01) : 45 - 52
  • [28] An identity involving 3-regular graphs
    Woodall, DR
    DISCRETE MATHEMATICS, 1996, 152 (1-3) : 287 - 293
  • [29] 3-regular hypergraphs that are decomposable and threshold
    Francel, MA
    John, DJ
    ARS COMBINATORIA, 2003, 67 : 3 - 26
  • [30] On Rewriting of Planar 3-Regular Graphs
    Tomita, Kohji
    Ikeda, Yasuwo
    Hosono, Chiharu
    INFORMATICS ENGINEERING AND INFORMATION SCIENCE, PT III, 2011, 253 : 346 - +