The Weierstrass semigroup of a pair and moduli M3

被引:7
|
作者
Kim, SJ [1 ]
Komeda, E
机构
[1] Gyeongsang Natl Univ, Dept Math, Chinju 660701, South Korea
[2] Kanagawa Inst Technol, Dept Math, Atsugi, Kanagawa 2430292, Japan
来源
基金
日本学术振兴会;
关键词
Weierstrass semigroup of a pair; plane quartic curve; moduli of curves of genus 3;
D O I
10.1007/BF01243864
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify all the Weierstrass semigroups of a pair of points on a curve of genus 3, by using its canonical model in the plane. Moreover, we count the dimension of the moduli of curves which have a pair of points with a specified Weierstrass semigroup.
引用
收藏
页码:149 / 157
页数:9
相关论文
共 50 条
  • [41] THE M3 MULTIPROCESSOR LABORATORY
    BURKHART, H
    EIGENMANN, R
    KINDLIMANN, H
    MOSER, M
    SCHOLIAN, H
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1993, 4 (05) : 507 - 519
  • [42] Samsung M3 Processor
    Rupley, Jeff
    Burgess, Brad
    Grayson, Brian
    Zuraski, Gerald D., Jr.
    IEEE MICRO, 2019, 39 (02) : 37 - 44
  • [43] Case atlas, m3
    Oyama T.
    Esophagus, 2005, 2 (1) : 39 - 42
  • [44] The instability strip of M3
    Bakos, GA
    Jurcsik, J
    IMPACT OF LARGE-SCALE SURVEYS ON PULSATING STAR RESEARCH, 2000, 203 : 255 - 256
  • [45] 1μg/m3
    日经
    军民两用技术与产品, 2016, (07) : 7 - 7
  • [47] The Riemann constant for a non-symmetric Weierstrass semigroup
    Komeda, Jiryo
    Matsutani, Shigeki
    Previato, Emma
    ARCHIV DER MATHEMATIK, 2016, 107 (05) : 499 - 509
  • [48] MODULI OF CURVES WITH 2 EXCEPTIONAL WEIERSTRASS POINTS
    DIAZ, S
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1984, 20 (02) : 471 - 478
  • [49] Metallicity spread in M3
    Jurcsik, J
    NEW HORIZONS IN GLOBULAR CLUSTER ASTRONOMY, 2003, 296 : 387 - 387
  • [50] 解析M3 GT
    奚旺
    汽车知识, 2011, (08) : 86 - 87