The Weierstrass semigroup of a pair and moduli M3

被引:7
|
作者
Kim, SJ [1 ]
Komeda, E
机构
[1] Gyeongsang Natl Univ, Dept Math, Chinju 660701, South Korea
[2] Kanagawa Inst Technol, Dept Math, Atsugi, Kanagawa 2430292, Japan
来源
基金
日本学术振兴会;
关键词
Weierstrass semigroup of a pair; plane quartic curve; moduli of curves of genus 3;
D O I
10.1007/BF01243864
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify all the Weierstrass semigroups of a pair of points on a curve of genus 3, by using its canonical model in the plane. Moreover, we count the dimension of the moduli of curves which have a pair of points with a specified Weierstrass semigroup.
引用
收藏
页码:149 / 157
页数:9
相关论文
共 50 条
  • [31] A WEIERSTRASS SEMIGROUP AT A GENERALIZED FLEX ON A PLANE CURVE
    Kim, Seon Jeong
    Kang, Eunju
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2021, 28 (04): : 399 - 411
  • [33] “M”先生——宝马M3
    若柯
    汽车与驾驶维修(汽车版), 2011, (04) : 136 - 139
  • [34] The smale conjecture for hyperbolic 3-manifolds:: Isom (M3) ≃ Diff (M3)
    Gabai, D
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2001, 58 (01) : 113 - 149
  • [36] Synthesis and reactivity of various m3 tricobalt imides and a m3 tricobalt nitride
    Lin, Benjamin
    Betley, Theodore A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [37] A note on the geometry of M3 and symplectic structures on S1 × M3
    T. Etgü
    Acta Mathematica Hungarica, 2007, 114 : 195 - 199
  • [38] THE INTEGRAL CHOW RINGS OF MODULI OF WEIERSTRASS FIBRATIONS
    Canning, Samir
    DI Lorenzo, Andrea
    Inchiostro, Giovanni
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (04) : 2711 - 2740
  • [39] 王者LEICA M3
    王鸿儒
    走向世界, 2013, (23) : 110 - 111
  • [40] The luminosity function of M3
    Rood, RT
    Carretta, E
    Paltrinieri, B
    Ferraro, FR
    Pecci, FF
    Dorman, B
    Chieffi, A
    Straniero, O
    Buonanno, R
    ASTROPHYSICAL JOURNAL, 1999, 523 (02): : 752 - 762