METHOD OF MOMENTS ESTIMATION FOR LeVY-DRIVEN ORNSTEIN-UHLENBECK STOCHASTIC VOLATILITY MODELS

被引:2
|
作者
Yang, Xiangyu [1 ]
Wu, Yanfeng [2 ]
Zheng, Zeyu [3 ]
Hu, Jian-Qiang [1 ]
机构
[1] Fudan Univ, Sch Management, Shanghai, Peoples R China
[2] Jiangxi Univ Finance & Econ, Nanchang, Jiangxi, Peoples R China
[3] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
consistency and asymptotic normality; method of moments; parameter estimation; stochastic volatility model; MAXIMUM-LIKELIHOOD-ESTIMATION; BAYESIAN-INFERENCE;
D O I
10.1017/S0269964820000315
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper studies the parameter estimation for Ornstein-Uhlenbeck stochastic volatility models driven by Levy processes. We propose computationally efficient estimators based on the method of moments that are robust to model misspecification. We develop an analytical framework that enables closed-form representation of model parameters in terms of the moments and autocorrelations of observed underlying processes. Under moderate assumptions, which are typically much weaker than those for likelihood methods, we prove large-sample behaviors for our proposed estimators, including strong consistency and asymptotic normality. Our estimators obtain the canonical square-root convergence rate and are shown through numerical experiments to outperform likelihood-based methods.
引用
收藏
页码:975 / 1004
页数:30
相关论文
共 50 条
  • [1] Gradient-based simulated maximum likelihood estimation for Levy-driven Ornstein-Uhlenbeck stochastic volatility models
    Peng, Yi-Jie
    Fu, Michael C.
    Hu, Jian-Qiang
    [J]. QUANTITATIVE FINANCE, 2014, 14 (08) : 1399 - 1414
  • [2] Estimation for nonnegative Levy-driven Ornstein-Uhlenbeck processes
    Brockwell, Peter J.
    Davis, Richard A.
    Yang, Yu
    [J]. JOURNAL OF APPLIED PROBABILITY, 2007, 44 (04) : 977 - 989
  • [3] Fractional Levy-driven Ornstein-Uhlenbeck processes and stochastic differential equations
    Fink, Holger
    Klueppelberg, Claudia
    [J]. BERNOULLI, 2011, 17 (01) : 484 - 506
  • [4] Drift estimation for a Levy-driven Ornstein-Uhlenbeck process with heavy tails
    Gushchin, Alexander
    Pavlyukevich, Ilya
    Ritsch, Marian
    [J]. STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (03) : 553 - 570
  • [5] Efficient maximum likelihood estimation for Levy-driven Ornstein-Uhlenbeck processes
    Mai, Hilmar
    [J]. BERNOULLI, 2014, 20 (02) : 919 - 957
  • [6] Nonparametric inference for Levy-driven Ornstein-Uhlenbeck processes
    Jongbloed, G
    Van der Meulen, FH
    Van der Vaart, AW
    [J]. BERNOULLI, 2005, 11 (05) : 759 - 791
  • [7] On exit times of Levy-driven Ornstein-Uhlenbeck processes
    Borovkov, Konstantin
    Novikov, Alexander
    [J]. STATISTICS & PROBABILITY LETTERS, 2008, 78 (12) : 1517 - 1525
  • [8] Model verification for Levy-driven Ornstein-Uhlenbeck processes
    Abdelrazeq, Ibrahim
    Ivanoff, B. Gail
    Kulik, Rafal
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 1029 - 1062
  • [9] ON THE EXPONENTIAL ERGODICITY OF LEVY-DRIVEN ORNSTEIN-UHLENBECK PROCESSES
    Wang, Jian
    [J]. JOURNAL OF APPLIED PROBABILITY, 2012, 49 (04) : 990 - 1004
  • [10] Ruin probabilities for a Levy-driven generalised Ornstein-Uhlenbeck process
    Kabanov, Yuri
    Pergamenshchikov, Serguei
    [J]. FINANCE AND STOCHASTICS, 2020, 24 (01) : 39 - 69