Fractional Levy-driven Ornstein-Uhlenbeck processes and stochastic differential equations

被引:27
|
作者
Fink, Holger [1 ]
Klueppelberg, Claudia [1 ,2 ]
机构
[1] Tech Univ Munich, Ctr Math Sci, D-85748 Garching, Germany
[2] Tech Univ Munich, Inst Adv Study, D-85748 Garching, Germany
关键词
fractional integral equation; fractional Levy process; fractional Levy-Ornstein-Uhlenbeck process; long-range dependence; p-variation; Riemann-Stieltjes integration; stationary solution to a fractional SDE; stochastic differential equation; FRACTAL FUNCTIONS; INTEGRATION; INEQUALITY; CALCULUS; RESPECT;
D O I
10.3150/10-BEJ281
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Using Riemann-Stieltjes methods for integrators of bounded p-variation we define a pathwise integral driven by a fractional Levy process (FLP). To explicitly solve general fractional stochastic differential equations (SDEs) we introduce an Ornstein-Uhlenbeck model by a stochastic integral representation, where the driving stochastic process is an FLP. To achieve the convergence of improper integrals, the long-time behavior of FLPs is derived. This is sufficient to define the fractional Levy-Ornstein-Uhlenbeck process (FLOUP) pathwise as an improper Riemann-Stieltjes integral. We show further that the FLOUP is the unique stationary solution of the corresponding Langevin equation. Furthermore, we calculate the autocovariance function and prove that its increments exhibit long-range dependence. Exploiting the Langevin equation, we consider SDEs driven by FLPs of bounded p-variation for p < 2 and construct solutions using the corresponding FLOUP. Finally, we consider examples of such SDEs, including various state space transforms of the FLOUP and also fractional Levy-driven Cox-Ingersoll-Ross (CIR) models.
引用
收藏
页码:484 / 506
页数:23
相关论文
共 50 条
  • [1] Nonparametric inference for Levy-driven Ornstein-Uhlenbeck processes
    Jongbloed, G
    Van der Meulen, FH
    Van der Vaart, AW
    [J]. BERNOULLI, 2005, 11 (05) : 759 - 791
  • [2] On exit times of Levy-driven Ornstein-Uhlenbeck processes
    Borovkov, Konstantin
    Novikov, Alexander
    [J]. STATISTICS & PROBABILITY LETTERS, 2008, 78 (12) : 1517 - 1525
  • [3] Estimation for nonnegative Levy-driven Ornstein-Uhlenbeck processes
    Brockwell, Peter J.
    Davis, Richard A.
    Yang, Yu
    [J]. JOURNAL OF APPLIED PROBABILITY, 2007, 44 (04) : 977 - 989
  • [4] Model verification for Levy-driven Ornstein-Uhlenbeck processes
    Abdelrazeq, Ibrahim
    Ivanoff, B. Gail
    Kulik, Rafal
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 1029 - 1062
  • [5] ON THE EXPONENTIAL ERGODICITY OF LEVY-DRIVEN ORNSTEIN-UHLENBECK PROCESSES
    Wang, Jian
    [J]. JOURNAL OF APPLIED PROBABILITY, 2012, 49 (04) : 990 - 1004
  • [6] Optimal trading strategies for Levy-driven Ornstein-Uhlenbeck processes
    Endres, S.
    Stuebinger, J.
    [J]. APPLIED ECONOMICS, 2019, 51 (29) : 3153 - 3169
  • [7] Moment estimators for parameters of levy-driven ornstein-uhlenbeck processes
    Wu, Yanfeng
    Hu, Jianqiang
    Yang, Xiangyu
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2022, 43 (04) : 610 - 639
  • [8] Goodness-of-fit tests for Levy-driven Ornstein-Uhlenbeck processes
    Abdelrazeq, Ibrahim
    Ivanoff, B. Gail
    Kulik, Rafal
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2018, 46 (02): : 355 - 376
  • [9] Model verification for Levy-driven Ornstein-Uhlenbeck processes with estimated parameters
    Abdelrazeq, Ibrahim
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 104 : 26 - 35
  • [10] Simulation of Levy-driven Ornstein-Uhlenbeck processes with given marginal distribution
    Taufer, Emanuele
    Leonenko, Nikolai
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (06) : 2427 - 2437