Estimation for nonnegative Levy-driven Ornstein-Uhlenbeck processes

被引:47
|
作者
Brockwell, Peter J. [1 ]
Davis, Richard A. [2 ]
Yang, Yu [1 ]
机构
[1] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[2] Columbia Univ, Dept Stat, New York, NY 10027 USA
关键词
continuous-time autoregression; Ornstein-Uhlenbeek process; Levy process; stochastic differential equation; sampled process;
D O I
10.1239/jap/1197908818
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Continuous-time autoregressive moving average (CARMA) processes with a nonnegative kernel and driven by a nondecreasing Levy process constitute a very general class of stationary, nonnegative continuous-time processes. In financial econometrics a stationary Ornstein-Uhlenbeck (or CAR(l)) process, driven by a nondecreasing Levy process, was introduced by Barndorff-Nielsen and Shephard (2001) as a model for stochastic volatility to allow for a wide variety of possible marginal distributions and the possibility of jumps. For such processes, we take advantage of the nonnegativity of the increments of the driving Levy process to study the properties of a highly efficient estimation procedure for the parameters when observations are available of the CAR(l) process at uniformly spaced times 0, h,..., Nh. We also show how to reconstruct the background driving Levy process from a continuously observed realization of the process and use this result to estimate the increments of the Levy process itself when h is small. Asymptotic properties of the coefficient estimator are derived and the results illustrated using a simulated gamma-driven Ornstein-Uhlenbeck process.
引用
收藏
页码:977 / 989
页数:13
相关论文
共 50 条
  • [1] Nonparametric inference for Levy-driven Ornstein-Uhlenbeck processes
    Jongbloed, G
    Van der Meulen, FH
    Van der Vaart, AW
    [J]. BERNOULLI, 2005, 11 (05) : 759 - 791
  • [2] On exit times of Levy-driven Ornstein-Uhlenbeck processes
    Borovkov, Konstantin
    Novikov, Alexander
    [J]. STATISTICS & PROBABILITY LETTERS, 2008, 78 (12) : 1517 - 1525
  • [3] Efficient maximum likelihood estimation for Levy-driven Ornstein-Uhlenbeck processes
    Mai, Hilmar
    [J]. BERNOULLI, 2014, 20 (02) : 919 - 957
  • [4] Model verification for Levy-driven Ornstein-Uhlenbeck processes
    Abdelrazeq, Ibrahim
    Ivanoff, B. Gail
    Kulik, Rafal
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 1029 - 1062
  • [5] ON THE EXPONENTIAL ERGODICITY OF LEVY-DRIVEN ORNSTEIN-UHLENBECK PROCESSES
    Wang, Jian
    [J]. JOURNAL OF APPLIED PROBABILITY, 2012, 49 (04) : 990 - 1004
  • [6] Optimal trading strategies for Levy-driven Ornstein-Uhlenbeck processes
    Endres, S.
    Stuebinger, J.
    [J]. APPLIED ECONOMICS, 2019, 51 (29) : 3153 - 3169
  • [7] Moment estimators for parameters of levy-driven ornstein-uhlenbeck processes
    Wu, Yanfeng
    Hu, Jianqiang
    Yang, Xiangyu
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2022, 43 (04) : 610 - 639
  • [8] Parameter Estimation for Ornstein-Uhlenbeck Driven by Ornstein-Uhlenbeck Processes with Small Levy Noises
    Zhang, Xuekang
    Shu, Huisheng
    Yi, Haoran
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (01) : 78 - 98
  • [9] Goodness-of-fit tests for Levy-driven Ornstein-Uhlenbeck processes
    Abdelrazeq, Ibrahim
    Ivanoff, B. Gail
    Kulik, Rafal
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2018, 46 (02): : 355 - 376
  • [10] Fractional Levy-driven Ornstein-Uhlenbeck processes and stochastic differential equations
    Fink, Holger
    Klueppelberg, Claudia
    [J]. BERNOULLI, 2011, 17 (01) : 484 - 506