A Highly Linear Dual-Stage Amplifier With Beyond 1.75-THz Gain-Bandwidth Product

被引:0
|
作者
Shivan, T. [1 ]
Hossain, M. [1 ]
Doerner, R. [1 ]
Yacoub, H. [1 ]
Johansen, T. K. [2 ]
Heinrich, W. [1 ]
Krozer, V. [1 ]
机构
[1] Ferdinand Braun Inst FBH, D-12489 Berlin, Germany
[2] Tech Univ Denmark DTU, Dept Elect Engn, DK-2800 Lyngby, Denmark
基金
欧盟地平线“2020”;
关键词
Bandwidth; Gain; Linearity; Optical fiber amplifiers; DH-HEMTs; Optical variables measurement; Optical buffering; Distributed amplifier (DA); gain-bandwidth product (GBP); InP double heterojunction bipolar transistor (DHBT); monolithic microwave integrated circuit (MMIC); DISTRIBUTED-AMPLIFIER;
D O I
10.1109/LMWC.2021.3067145
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work reports a multipurpose highly linear ultrawideband amplifier with a gain-bandwidth product (GBP) of 1.75 THz, the highest reported in any monolithic microwave integrated circuit (MMIC) process. A transimpedance amplifier is cascaded with a distributed amplifier, emulating a receiver subsystem. Using a diamond heat spreader, to dissipate heat from transistors, the cascaded amplification subsystem can achieve very high output third-order-intercept point (OIP3) from 20 to 24 dBm when measured between 5 and 65 GHz. A small-signal average gain of 24 dB is observed over a frequency range exceeding the maximum measurable bandwidth from dc to 110 GHz. Compared with other ultrawideband MMIC amplifiers beyond 110-GHz bandwidth, the circuit offers a unique combination of high linearity (OIP3) and high gain. As a result, the cascaded amplifier is suitable for applications in optical-electrical converters, spectroscopy, and ultrawideband measurement systems in the subterahertz frequency range.
引用
收藏
页码:717 / 720
页数:4
相关论文
共 50 条
  • [21] A Dual-Wideband CMOS LNA Using Gain-Bandwidth Product Optimization Technique
    Chen, Chun-Chieh
    Wang, Yen-Chun
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (02) : 495 - 510
  • [22] A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product
    Lee, Myung-Jae
    Choi, Woo-Young
    [J]. OPTICS EXPRESS, 2010, 18 (23): : 24189 - 24194
  • [23] A 1.1 THz Gain-Bandwidth W-Band Amplifier in a 0.12 μm Silicon Germanium BiCMOS Process
    Kim, Joohwa
    Buckwalter, James F.
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2010, 20 (11) : 625 - 627
  • [24] DOUBLE-PUMPED X-BAND PARAMETRIC AMPLIFIER WITH EXTREMELY LARGE GAIN-BANDWIDTH PRODUCT
    SPACEK, GC
    [J]. PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1962, 50 (06): : 1534 - &
  • [27] A high gain-bandwidth product InPHEMT distributed amplifier with 92 GHz cut-off frequency for 40 Gbit/s applications and beyond
    Meliani, C
    Rondeau, G
    Post, G
    Decobert, J
    Mouzannar, W
    Dutisseuil, E
    Lefevre, R
    [J]. GAAS IC SYMPOSIUM - 24TH ANNUAL, TECHNICAL DIGEST 2002, 2002, : 103 - 106
  • [28] Double modulation of the electric field in InGaAs/Si APD by groove rings for the achievement of THz gain-bandwidth product
    Shi, Ziwei
    Ke, Shaoying
    Meng, Wenhao
    Wang, Zhanren
    Guo, Menghui
    Jiang, Xiaolong
    Liu, Kun
    Lin, Zhiwei
    Chen, Xiaoping
    [J]. Physica Scripta, 2024, 99 (11)
  • [29] Design of variable gain amplifier with gain-bandwidth product up to 354 GHz implemented in InP-InGaAs DHBT technology
    Lai, JW
    Chuang, YJ
    Cimino, K
    Feng, M
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (02) : 599 - 607
  • [30] Dual-stage Er/Yb doped fiber amplifier for gain and noise figure enhancements
    Harun, S. W.
    Abdul-Rashid, H. A.
    Muhd-Yassin, S. Z.
    Abd-Rahman, M. K.
    Tamjis, M. R.
    Ahmad, H.
    [J]. IEICE ELECTRONICS EXPRESS, 2006, 3 (23): : 517 - 521