Automatic Transmission Bearing Fault Diagnosis Based on Comprehensive Index Method and Convolutional Neural Network

被引:3
|
作者
Li, Guangxin [1 ]
Chen, Yong [1 ]
Wang, Wenqing [2 ]
Wu, Yimin [1 ]
Liu, Rui [1 ]
机构
[1] Hebei Univ Technol, Sch Mech Engn, Tianjin Key Lab Power Transmiss & Safety Technol, Tianjin 300130, Peoples R China
[2] Weichai Power Co Ltd, Weifang 261061, Peoples R China
来源
WORLD ELECTRIC VEHICLE JOURNAL | 2022年 / 13卷 / 10期
基金
国家重点研发计划;
关键词
rolling-element bearing; complete ensemble empirical mode decomposition with adaptive noise; independent component analysis; convolutional neural network; fault diagnosis;
D O I
10.3390/wevj13100184
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Rolling-element bearing fault diagnosis has some problems in the applied environment, such as low signal-to-noise ratio, weak feature extraction, low efficiency of feature learning and the complex structure of diagnosis models. A fault diagnosis method based on the comprehensive index method, complete ensemble empirical mode decomposition with adaptive noise independent component analysis (CEEMDANICA) and two-dimensional convolutional neural network (TDCNN) is proposed. Firstly, the original vibration signal of the bearing is preprocessed by CEEMDANICA, and the ICA components with different frequencies are obtained. Secondly, the ICA components are selected as the sample set by using multiscale permutation entropy, correlation coefficient, kurtosis and box dimension. Finally, the sample set are trained and tested by a DCNN model to realize the fault diagnosis of different bearing fault types. In order to verify the reliability of the method, a bearing fault vibration monitoring platform for an electric vehicle two-speed automatic transmission was built to collect the bearing vibration signals of multiple fault types under different working conditions. The diagnostic accuracy of several deep learning models is compared. The results show that the proposed method can realize the single and compound fault diagnosis of rolling-element bearings in an automatic transmission, with a high degree of accuracy.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A review on convolutional neural network in rolling bearing fault diagnosis
    Li, Xin
    Ma, Zengqiang
    Yuan, Zonghao
    Mu, Tianming
    Du, Guoxin
    Liang, Yan
    Liu, Jingwen
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (07)
  • [42] Cellular Network Fault Diagnosis Method Based on a Graph Convolutional Neural Network
    Amuah, Ebenezer Ackah
    Wu, Mingxiao
    Zhu, Xiaorong
    [J]. SENSORS, 2023, 23 (16)
  • [43] A Two-dimensional Convolutional Neural Network Optimization Method for Bearing Fault Diagnosis
    Xiao X.
    Wang J.
    Zhang Y.
    Guo Q.
    Zong S.
    [J]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2019, 39 (15): : 4558 - 4567
  • [44] A comprehensive review on convolutional neural network in machine fault diagnosis
    Jiao, Jinyang
    Zhao, Ming
    Lin, Jing
    Liang, Kaixuan
    [J]. NEUROCOMPUTING, 2020, 417 : 36 - 63
  • [45] A new bearing fault diagnosis method based on modified convolutional neural networks
    Zhang, Jiangquan
    Sun, Yi
    Guo, Liang
    Gao, Hongli
    Hong, Xin
    Song, Hongliang
    [J]. CHINESE JOURNAL OF AERONAUTICS, 2020, 33 (02) : 439 - 447
  • [46] A new bearing fault diagnosis method based on modified convolutional neural networks
    Jiangquan ZHANG
    Yi SUN
    Liang GUO
    Hongli GAO
    Xin HONG
    Hongliang SONG
    [J]. Chinese Journal of Aeronautics, 2020, (02) : 439 - 447
  • [47] A new bearing fault diagnosis method based on modified convolutional neural networks
    Jiangquan ZHANG
    Yi SUN
    Liang GUO
    Hongli GAO
    Xin HONG
    Hongliang SONG
    [J]. Chinese Journal of Aeronautics, 2020, 33 (02) : 439 - 447
  • [48] Fault Diagnosis for AC/DC Transmission System Based on Convolutional Neural Network
    Zhang D.
    Zhang X.
    Sun H.
    He J.
    [J]. Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2022, 46 (05): : 132 - 140
  • [49] Fault Diagnosis Method of Mechanical Equipment Based on Convolutional Neural Network
    Zhou, Jun
    Zhang, Wenfeng
    Sun, WeiZhao
    [J]. PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ROBOTICS, INTELLIGENT CONTROL AND ARTIFICIAL INTELLIGENCE (RICAI 2019), 2019, : 459 - 465
  • [50] Research on bearing fault diagnosis method based on transformer neural network
    Yang, Zhuohong
    Cen, Jian
    Liu, Xi
    Xiong, Jianbin
    Chen, Honghua
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (08)