A new bearing fault diagnosis method based on modified convolutional neural networks

被引:0
|
作者
Jiangquan ZHANG
Yi SUN
Liang GUO
Hongli GAO
Xin HONG
Hongliang SONG
机构
[1] SchoolofMechanicalEngineering,SouthwestJiaotongUniversity
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Fault diagnosis is vital in manufacturing system.However,the first step of the traditional fault diagnosis method is to process the signal,extract the features and then put the features into a selected classifier for classification.The process of feature extraction depends on the experimenters'experience,and the classification rate of the shallow diagnostic model does not achieve satisfactory results.In view of these problems,this paper proposes a method of converting raw signals into twodimensional images.This method can extract the features of the converted two-dimensional images and eliminate the impact of expert's experience on the feature extraction process.And it follows by proposing an intelligent diagnosis algorithm based on Convolution Neural Network (CNN),which can automatically accomplish the process of the feature extraction and fault diagnosis.The effect of this method is verified by bearing data.The influence of different sample sizes and different load conditions on the diagnostic capability of this method is analyzed.The results show that the proposed method is effective and can meet the timeliness requirements of fault diagnosis.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A new bearing fault diagnosis method based on modified convolutional neural networks
    Zhang, Jiangquan
    Sun, Yi
    Guo, Liang
    Gao, Hongli
    Hong, Xin
    Song, Hongliang
    [J]. CHINESE JOURNAL OF AERONAUTICS, 2020, 33 (02) : 439 - 447
  • [2] A new bearing fault diagnosis method based on modified convolutional neural networks
    Jiangquan ZHANG
    Yi SUN
    Liang GUO
    Hongli GAO
    Xin HONG
    Hongliang SONG
    [J]. Chinese Journal of Aeronautics, 2020, (02) : 439 - 447
  • [3] Bearing intelligent fault diagnosis based on convolutional neural networks
    An, Jing
    An, Peng
    [J]. International Journal of Circuits, Systems and Signal Processing, 2022, 16 : 470 - 477
  • [4] Research on rolling bearing fault diagnosis method based on AMVMD and convolutional neural networks
    Zhang, Huichao
    Shi, Peiming
    Han, Dongying
    Jia, Linjie
    [J]. MEASUREMENT, 2023, 217
  • [5] A Fault Diagnosis Method Based on Transfer Convolutional Neural Networks
    Liu, Qing
    Huang, Chenxi
    [J]. IEEE ACCESS, 2019, 7 : 171423 - 171430
  • [6] A Fault Diagnosis Method of Rolling Bearing Based on Convolutional Neural Network
    Zhang, Bangcheng
    Gao, Shuo
    Hu, Guanyu
    Gao, Zhi
    Zhao, Yadong
    Du, Jianzhuang
    [J]. 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4709 - 4713
  • [7] Bearing Feature Extraction and Fault Diagnosis Algorithm Based on Convolutional Neural Networks
    Sun, Yi
    Gao, Hongli
    Song, Hongliang
    Hong, Xin
    Liu, Qi
    [J]. 2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 780 - 784
  • [8] A deep learning method for bearing fault diagnosis based on Cyclic Spectral Coherence and Convolutional Neural Networks
    Chen, Zhuyun
    Mauricio, Alexandre
    Li, Weihua
    Gryllias, Konstantinos
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 140
  • [9] A Novel Method for Diagnosis of Bearing Fault Using Hierarchical Multitasks Convolutional Neural Networks
    Liu, Yong-Zhi
    Zou, Yi-Sheng
    Jiang, Yu-Liang
    Yu, Hui
    Ding, Guo-Fu
    [J]. SHOCK AND VIBRATION, 2020, 2020
  • [10] A Novel Method for Diagnosis of Bearing Fault Using Hierarchical Multitasks Convolutional Neural Networks
    Liu, Yong-Zhi
    Zou, Yi-Sheng
    Jiang, Yu-Liang
    Yu, Hui
    DIng, Guo-Fu
    [J]. Zou, Yi-Sheng (zysapple@swjtu.edu.cn), 2020, Hindawi Limited (2020)