The Population Posterior and Bayesian Modeling on Streams

被引:0
|
作者
McInerney, James [1 ]
Ranganath, Rajesh [2 ]
Blei, David [1 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
[2] Princeton Univ, Princeton, NJ 08544 USA
关键词
INFERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many modern data analysis problems involve inferences from streaming data. However, streaming data is not easily amenable to the standard probabilistic modeling approaches, which require conditioning on finite data. We develop population variational Bayes, a new approach for using Bayesian modeling to analyze streams of data. It approximates a new type of distribution, the population posterior, which combines the notion of a population distribution of the data with Bayesian inference in a probabilistic model. We develop the population posterior for latent Dirichlet allocation and Dirichlet process mixtures. We study our method with several large-scale data sets.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] On posterior distribution of Bayesian wavelet thresholding
    Lian, Heng
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) : 318 - 324
  • [42] Kernel Bayesian Inference with Posterior Regularization
    Song, Yang
    Zhu, Jun
    Ren, Yong
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [43] Bayesian Active Learning for Posterior Estimation
    Kandasamy, Kirthevasan
    Schneider, Jeff
    Poczos, Barnabas
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 3605 - 3611
  • [44] Iterative posterior inference for Bayesian Kriging
    Zhang, Zepu
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2012, 26 (07) : 913 - 923
  • [45] Bayesian inference and posterior probability maps
    Friston, KJ
    Penny, W
    [J]. ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 413 - 417
  • [46] Bayesian Posterior Repartitioning for Nested Sampling
    Chen, Xi
    Feroz, Farhan
    Hobson, Michael
    [J]. BAYESIAN ANALYSIS, 2023, 18 (03): : 695 - 721
  • [47] Bayesian posterior approximation with stochastic ensembles
    Balabanov, Oleksandr
    Mehlig, Bernhard
    Linander, Hampus
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 13701 - 13711
  • [48] Modeling Files with Context Streams
    Qiu, Qunjie
    Pan, Gang
    Li, Shijian
    [J]. UBIQUITOUS INTELLIGENCE AND COMPUTING, 2010, 6406 : 322 - 336
  • [49] Quantitative comparisons between finitary posterior distributions and Bayesian posterior distributions
    Bassetti, Federico
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (02) : 787 - 799
  • [50] Modeling broadband traffic streams
    Neame, TD
    Zukerman, M
    Addie, RG
    [J]. GLOBECOM'99: SEAMLESS INTERCONNECTION FOR UNIVERSAL SERVICES, VOL 1-5, 1999, : 1048 - 1052