Quantitative comparisons between finitary posterior distributions and Bayesian posterior distributions

被引:1
|
作者
Bassetti, Federico [1 ]
机构
[1] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
de Finetti's theorem; Dudley metric; Empirical distribution; Finitary Bayesian inference; Finite exchangeability; Gini-Kantorovich-Wasserstein distance; Predictive inference; Quantitative comparison of posterior distributions; NORMALIZED RANDOM MEASURES; POLYA TREE DISTRIBUTIONS;
D O I
10.1016/j.jspi.2010.08.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The main object of Bayesian statistical inference is the determination of posterior distributions. Sometimes these laws are given for quantities devoid of empirical value. This serious drawback vanishes when one confines oneself to considering a finite horizon framework. However, assuming infinite exchangeability gives rise to fairly tractable a posteriori quantities, which is very attractive in applications. Hence, with a view to a reconciliation between these two aspects of the Bayesian way of reasoning, in this paper we provide quantitative comparisons between posterior distributions of finitary parameters and posterior distributions of allied parameters appearing in usual statistical models. © 2010 Elsevier B.V.
引用
收藏
页码:787 / 799
页数:13
相关论文
共 50 条
  • [1] POSTERIOR CONSISTENCY FOR GAUSSIAN PROCESS APPROXIMATIONS OF BAYESIAN POSTERIOR DISTRIBUTIONS
    Stuart, Andrew M.
    Teckentrup, Aretha L.
    [J]. MATHEMATICS OF COMPUTATION, 2018, 87 (310) : 721 - 753
  • [2] Robust Bayesian Regression with Synthetic Posterior Distributions
    Hashimoto, Shintaro
    Sugasawa, Shonosuke
    [J]. ENTROPY, 2020, 22 (06)
  • [3] Weighted Bayesian bootstrap for scalable posterior distributions
    Newton, Michael A.
    Polson, Nicholas G.
    Xu, Jianeng
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (02): : 421 - 437
  • [4] Bayesian Posterior Distributions Without Markov Chains
    Cole, Stephen R.
    Chu, Haitao
    Greenland, Sander
    Hamra, Ghassan
    Richardson, David B.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2012, 175 (05) : 368 - 375
  • [5] REFERENCE POSTERIOR DISTRIBUTIONS FOR BAYESIAN-INFERENCE
    BERNARDO, JM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1979, 41 (02) : 113 - 147
  • [6] Automatic Tempered Posterior Distributions for Bayesian Inversion Problems
    Martino, Luca
    Llorente, Fernando
    Curbelo, Ernesto
    Lopez-Santiago, Javier
    Miguez, Joaquin
    [J]. MATHEMATICS, 2021, 9 (07)
  • [7] Prior and Posterior Dirichlet Distributions on Bayesian Networks (BNs)
    Saputro, Dewi Retno Sari
    Widyaningsih, Purnami
    Handayani, Feri
    Kurdhi, Nughthoh Arfawi
    [J]. STATISTICS AND ITS APPLICATIONS, 2017, 1827
  • [8] Learning bounds for a generalized family of Bayesian posterior distributions
    Zhang, T
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 : 1149 - 1156
  • [9] Expansions for posterior distributions
    Withers, Christopher
    Nadarajah, Saralees
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2023, 37 (01) : 73 - 100
  • [10] On limiting posterior distributions
    Hwang, H
    So, B
    Kim, Y
    [J]. TEST, 2005, 14 (02) : 567 - 580