Ethylenediamine-modified multiwall carbon nanotubes as a Pt catalyst support
被引:4
|
作者:
Vukovic, Goran D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Belgrade, Fac Technol & Met, Belgrade 11120, SerbiaUniv Belgrade, Fac Technol & Met, Belgrade 11120, Serbia
Vukovic, Goran D.
[1
]
Obradovic, Maja D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Belgrade, Inst Chem Technol & Met, Belgrade 11001, SerbiaUniv Belgrade, Fac Technol & Met, Belgrade 11120, Serbia
Obradovic, Maja D.
[2
]
Marinkovic, Aleksandar D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Belgrade, Fac Technol & Met, Belgrade 11120, SerbiaUniv Belgrade, Fac Technol & Met, Belgrade 11120, Serbia
Marinkovic, Aleksandar D.
[1
]
Rogan, Jelena R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Belgrade, Fac Technol & Met, Belgrade 11120, SerbiaUniv Belgrade, Fac Technol & Met, Belgrade 11120, Serbia
Rogan, Jelena R.
[1
]
Uskokovic, Petar S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Belgrade, Fac Technol & Met, Belgrade 11120, SerbiaUniv Belgrade, Fac Technol & Met, Belgrade 11120, Serbia
Uskokovic, Petar S.
[1
]
Radmilovic, Velimir R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Belgrade, Fac Technol & Met, Belgrade 11120, Serbia
Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USAUniv Belgrade, Fac Technol & Met, Belgrade 11120, Serbia
Radmilovic, Velimir R.
[1
,3
]
Gojkovic, Snezana Lj.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Belgrade, Fac Technol & Met, Belgrade 11120, SerbiaUniv Belgrade, Fac Technol & Met, Belgrade 11120, Serbia
Gojkovic, Snezana Lj.
[1
]
机构:
[1] Univ Belgrade, Fac Technol & Met, Belgrade 11120, Serbia
Multi-walled carbon nanotubes (MWCNTs) were used as a support for Pt nanoparticles prepared by the microwave-assisted polyol method. The MWCNTs were pretreated by chemical oxidation (o-MWCNTs) followed by modification by ethylenediamine (eda-MWCNTs). Characterization of both oxidized and eda-modified materials by UV-spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy revealed that the modification by eda leads to (i) agglomeration of the MWCNTs, (ii) a decrease in the capacitance of the material and (iii) reduced rate of electron transfer between the MWCNTs and solution species. However, the Pt loading of Pt/o-MWCNTs was only 2 mass% while the loading of Pt/eda-MWCNTs was 20 mass%. Much higher efficiency of Pt deposition on eda-MWCNTs than on o-MWCNTs was ascribed to the shift in pH(pzc) value of the MWCNT surface from 2.43 to 5.91 upon modification by eda. Transmission electron microscopy revealed that the mean diameter of the Pt particles in Pt/eda-MWCNTs is 2.5 +/- 0.5 nm and that their distribution on the support is homogenous with no evidence of pronounced particle agglomeration. Cyclic voltammetry of a Pt/eda-MWCNT thin film indicated a clean Pt surface with well-resolved peaks characteristic of polycrystalline Pt. Its electrocatalytic activity for oxygen reduction was examined and the results corresponded to the commercial Pt nanocatalyst. This study shows that modification of o-MWCNTs by eda helps to achieve homogenous distribution of small Pt nanoparticles and does not impede its electrocatalytic activity. (C) 2011 Elsevier B.V. All rights reserved.
5TH INTERNATIONAL CONFERENCE ON TOPICAL PROBLEMS OF CONTINUUM MECHANICS WITH A SPECIAL SESSION IN HONOR OF ALEXANDER MANZHIROV'S 60TH BIRTHDAY,
2018,
991