Numerical bifurcation analysis for ODEs

被引:30
|
作者
Govaerts, W [1 ]
机构
[1] Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
关键词
equilibrium; continuation; cycle;
D O I
10.1016/S0377-0427(00)00458-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems. We further consider the computation of cycles as a boundary value problem, their continuation and bifurcations. Homoclinic orbits can also be computed as (truncated) boundary value problems and numerically continued. On curves of homoclinic orbits further bifurcations can be detected and computed. We discuss the basic numerical methods, the connections between various computational objects, and provide references to the literature and software implementations. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:57 / 68
页数:12
相关论文
共 50 条
  • [21] Numerical Bifurcation Analysis for Multisection Semiconductor Lasers
    Sieber, Jan
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2002, 1 (02): : 248 - 270
  • [22] On the numerical analysis of the imperfect bifurcation of codim ≤ 3
    Böhmer, K
    Janovska, D
    Janovsky, V
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (02) : 416 - 430
  • [23] NUMERICAL ANALYSIS OF DYNAMIC QUASI-BIFURCATION.
    Kleiber, M.
    Kotula, W.
    Saran, M.
    Engineering computations, 1987, 4 (01) : 48 - 52
  • [24] NUMERICAL-ANALYSIS OF THE FLIP BIFURCATION OF MAPS
    KUZNETSOV, YA
    RINALDI, S
    APPLIED MATHEMATICS AND COMPUTATION, 1991, 43 (03) : 231 - 236
  • [25] Numerical analysis of a degenerate generalized Hopf bifurcation
    Xue, Miao
    Bi, Qinsheng
    Li, Shaolong
    Xia, Yibo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2021, 32 (08):
  • [26] Numerical bifurcation analysis of delay differential equations
    Engelborghs, K
    Luzyanina, T
    Roose, D
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) : 265 - 275
  • [27] River bifurcation analysis by physical and numerical modeling
    Zanichelli, G
    Caroni, E
    Fiorotto, V
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2004, 130 (03): : 237 - 242
  • [28] ASYMPTOTIC EXPANSION OF OSCILLATORY BIFURCATION CURVES OF ODES WITH NONLINEAR DIFFUSION
    Shibata, Tetsutaro
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2020, 33 (5-6) : 257 - 272
  • [29] The BiM code for the numerical solution of ODEs
    Brugnano, L
    Magherini, C
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 164 : 145 - 158
  • [30] Numerical solution of ODEs with distributed maple
    Petcu, D
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 666 - 674