The BiM code for the numerical solution of ODEs

被引:30
|
作者
Brugnano, L [1 ]
Magherini, C [1 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
关键词
numerical software; numerical methods for ODEs; stiff problems; iterative solution of linear systems; nonlinear splittings;
D O I
10.1016/j.cam.2003.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present the code BiM, based on blended implicit methods (J. Comput. Appl. Math. 116 (2000) 41; Appl. Numer. Math. 42 (2002) 29; Recent Trends in Numerical Analysis, Nova Science Publ. Inc., New York, 2001, pp. 81.), for the numerical solution of stiff initial value problems for ODEs. We describe in detail most of the implementation strategies used in the construction of the code, and report numerical tests comparing the code BiM with some of the best codes currently available. The numerical tests show that the new code compares well with existing ones. Moreover, the methods implemented in the code are characterized by a diagonal nonlinear splitting, which makes its extension for parallel computers very straightforward. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:145 / 158
页数:14
相关论文
共 50 条
  • [1] The Numerical Solution of Random ODEs
    Kloeden, Peter
    Han, Xiaoying
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [2] Numerical solution of ODEs - Preface
    Simos, TE
    Gladwell, I
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (11-12) : XIII - XIII
  • [3] A SINGLE CODE FOR THE SOLUTION OF STIFF AND NONSTIFF ODES
    HALL, G
    SULEIMAN, MB
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (03): : 684 - 697
  • [4] Numerical solution of ODEs with distributed maple
    Petcu, D
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 666 - 674
  • [5] CONTROL THEORY AND THE NUMERICAL SOLUTION OF ODES
    Ekanayake, M. P. B.
    He, B.
    Huo, L.
    Kaphle, K.
    Martin, C.
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2008, 8 (03) : 201 - 222
  • [6] Towards the automatic numerical solution of odes
    Petcu, D
    ITI 2000: PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, 2000, : 171 - 176
  • [7] MAINTAINING SOLUTION INVARIANTS IN THE NUMERICAL-SOLUTION OF ODES
    GEAR, CW
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (03): : 734 - 743
  • [8] CONSERVATION LAWS AND THE NUMERICAL SOLUTION OF ODEs.
    Shampine, L.F.
    Computers & mathematics with applications, 1986, 12 B (5-6): : 1287 - 1296
  • [9] Conservation laws and the numerical solution of ODEs, II
    Shampine, LF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 38 (02) : 61 - 72
  • [10] Adaptivity and computational complexity in the numerical solution of ODEs
    Ilie, Silvana
    Soderlind, Gustaf
    Corless, Robert M.
    JOURNAL OF COMPLEXITY, 2008, 24 (03) : 341 - 361