Heave Plates with Holes for Floating Offshore Wind Turbines

被引:8
|
作者
Ciba, Ewelina [1 ]
Dymarski, Pawel [1 ]
Grygorowicz, Miroslaw [1 ]
机构
[1] Gdansk Univ Technol, Narutowicza 11-12, PL-80233 Gdansk, Poland
关键词
spar platforms; heave plates; damping coefficient; Floating Offshore Wind Turbines (FOWTs); ADDED-MASS; MOTION; SPAR; SOLVER;
D O I
10.2478/pomr-2022-0003
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The paper presents an innovative solution which is heave plates with holes. The long-known heave plates are designed to damp the heave motion of platforms. They are most often used for Spar platforms. The growing interest in this type of platform as supporting structures for offshore wind turbines makes it necessary to look for new solutions. Based on the available literature and the authors' own research, it was concluded that the main element responsible for the damping of heave plates is not so much the surface of the plate, but its edge. Therefore, it was decided to investigate the effect of the holes in heave plates on their damping coefficient. Model tests and CFD calculations were performed for three different structures: a smooth cylinder, a cylinder with heave plates with a diameter of 1.4 times the diameter of the cylinder, and a cylinder with the same plate, in which 24 holes were cut (Fig. 1). Free Decay Tests (FDT) were used to determine the damping coefficient and the natural period of heave, and then the values obtained were compared. The full and punched heave-plate designs were also tested with regular waves of different periods to obtain amplitude characteristics. The results obtained are not unequivocal, as a complex motion appears here; however, it is possible to clearly define the area in which the damping of a plate with holes is greater than that of a full plate.
引用
下载
收藏
页码:26 / 33
页数:8
相关论文
共 50 条
  • [41] A hybrid methodology for wind tunnel testing of floating offshore wind turbines
    Belloli, M.
    Bayati, I
    Facchinetti, A.
    Fontanella, A.
    Giberti, H.
    La Mura, F.
    Taruffi, F.
    Zasso, A.
    OCEAN ENGINEERING, 2020, 210
  • [42] METHODOLOGY FOR WIND/WAVE BASIN TESTING OF FLOATING OFFSHORE WIND TURBINES
    Martin, Heather R.
    Kimball, Richard W.
    Viselli, Anthony M.
    Goupee, Andrew J.
    PROCEEDINGS OF THE ASME 31ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARTIC ENGINEERING, VOL 7, 2013, : 445 - 454
  • [43] Wind spectral characteristics on strength design of floating offshore wind turbines
    Udoh, Ikpoto E.
    Zou, Jun
    OCEAN SYSTEMS ENGINEERING-AN INTERNATIONAL JOURNAL, 2018, 8 (03): : 281 - 312
  • [44] Methodology for Wind/Wave Basin Testing of Floating Offshore Wind Turbines
    Martin, Heather R.
    Kimball, Richard W.
    Viselli, Anthony M.
    Goupee, Andrew J.
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (02):
  • [45] A novel concept of floating absorber for motion mitigation in floating offshore wind turbines
    Alotta, Gioacchino
    Laface, Valentina
    Failla, Giuseppe
    Ruzzo, Carlo
    Arena, Felice
    ENGINEERING STRUCTURES, 2023, 294
  • [46] ESTIMATION FOR EFFICIENCY OF OFFSHORE INSTALLATION PROCESS OF FLOATING OFFSHORE WIND TURBINES IN JAPAN
    Hasumi, Tomohiro
    Yokoi, Takeshi
    Haneda, Ken
    Chujo, Toshiki
    Fujiwara, Toshifumi
    Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 2023, 8
  • [47] ESTIMATION FOR EFFICIENCY OF OFFSHORE INSTALLATION PROCESS OF FLOATING OFFSHORE WIND TURBINES IN JAPAN
    Hasumi, Tomohiro
    Yokoi, Takeshi
    Haneda, Ken
    Chujo, Toshiki
    Fujiwara, Toshifumi
    PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 8, 2023,
  • [48] Floating offshore turbines
    Tande, John Olav Giaever
    Merz, Karl
    Paulsen, Uwe Schmidt
    Svendsen, Harald G.
    WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT, 2015, 4 (03) : 213 - 228
  • [49] Characterization of different typologies of floating platforms for offshore wind turbines
    Ferreno-Gonzalez, S.
    Castro-Santos, L.
    Diaz-Casas, V.
    Fraguela-Formoso, J. A.
    DEVELOPMENTS IN MARITIME TRANSPORTATION AND EXPLOITATION OF SEA RESOURCES, VOL 2, 2014, : 909 - 918
  • [50] Numerical analysis of unsteady aerodynamics of floating offshore wind turbines
    Cormier, M.
    Caboni, M.
    Lutz, T.
    Boorsma, K.
    Kraemer, E.
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2018), 2018, 1037