Methodology for Wind/Wave Basin Testing of Floating Offshore Wind Turbines

被引:89
|
作者
Martin, Heather R. [1 ]
Kimball, Richard W. [2 ]
Viselli, Anthony M. [3 ]
Goupee, Andrew J. [3 ]
机构
[1] Kleinschmidt Associates, Pittsfield, ME 04967 USA
[2] Maine Maritime Acad, Castine, ME 04420 USA
[3] Univ Maine, Adv Struct & Composites Ctr, Orono, ME 04469 USA
基金
美国国家科学基金会;
关键词
D O I
10.1115/1.4025030
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Scale-model wave basin testing is often employed in the development and validation of large-scale offshore vessels and structures by the oil and gas, military, and marine industries. A basin-model test requires less time, resources, and risk than a full-scale test, while providing real and accurate data for numerical simulator validation. As the development of floating wind turbine technology progresses in order to capture the vast deepwater wind energy resource, it is clear that model testing will be essential for the economical and efficient advancement of this technology. However, the scale model testing of floating wind turbines requires accurate simulation of the wind and wave environments, structural flexibility, and wind turbine aerodynamics and thus requires a comprehensive scaling methodology. This paper presents a unified methodology for Froude scale model testing of floating wind turbines under combined wind and wave loading. First, an overview of the scaling relationships employed for the environment, floater, and wind turbine are presented. Afterward, a discussion is presented concerning suggested methods for manufacturing a high-quality, low-turbulence Froude scale wind environment in a wave basin to facilitate simultaneous application of wind and waves to the model. Subsequently, the difficulties of scaling the highly Reynolds number-dependent wind turbine aerodynamics is presented in addition to methods for tailoring the turbine and wind characteristics to best emulate the full-scale condition. Lastly, the scaling methodology is demonstrated using results from 1/50th-scale floating wind turbine testing performed at the Maritime Research Institute Netherlands (MARIN) Offshore Basin. The model test campaign investigated the response of the 126 -m rotor diameter National Renewable Energy Lab (NREL) horizontal axis wind turbine atop three floating platforms: a tension-leg platform, a spar-buoy, and a semisubmersible. The results highlight the methodology's strengths and weaknesses for simulating full-scale global response of floating wind turbine systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] METHODOLOGY FOR WIND/WAVE BASIN TESTING OF FLOATING OFFSHORE WIND TURBINES
    Martin, Heather R.
    Kimball, Richard W.
    Viselli, Anthony M.
    Goupee, Andrew J.
    [J]. PROCEEDINGS OF THE ASME 31ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARTIC ENGINEERING, VOL 7, 2013, : 445 - 454
  • [2] A hybrid methodology for wind tunnel testing of floating offshore wind turbines
    Belloli, M.
    Bayati, I
    Facchinetti, A.
    Fontanella, A.
    Giberti, H.
    La Mura, F.
    Taruffi, F.
    Zasso, A.
    [J]. OCEAN ENGINEERING, 2020, 210
  • [3] DESIGN AND TESTING OF SCALE MODEL WIND TURBINES FOR USE IN WIND/WAVE BASIN MODEL TESTS OF FLOATING OFFSHORE WIND TURBINES
    Fowler, Matthew J.
    Kimball, Richard W.
    Thomas, Dale A., III
    Goupee, Andrew J.
    [J]. PROCEEDINGS OF THE ASME 32ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING - 2013 - VOL 8, 2013,
  • [4] SIMULATION AND DEVELOPMENT OF A WIND-WAVE FACILITY FOR SCALE TESTING OF OFFSHORE FLOATING WIND TURBINES
    McElman, Sarah
    Koop, Arjen
    de Ridder, Erik-Jan
    Goupee, Andrew
    [J]. PROCEEDINGS OF THE ASME 35TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING , 2016, VOL 6, 2016,
  • [5] Floating offshore wind turbines
    Sclavounos, Paul
    [J]. MARINE TECHNOLOGY SOCIETY JOURNAL, 2008, 42 (02) : 39 - 43
  • [6] A methodology for the power performance assessment of floating offshore wind turbines
    Couto, A.
    Justino, P. A. P.
    Silva, J.
    Estanqueiro, A.
    [J]. PROGRESS IN RENEWABLE ENERGIES OFFSHORE, 2016, : 129 - 137
  • [7] A Feedback Control Loop Optimisation Methodology for Floating Offshore Wind Turbines
    Olondriz, Joannes
    Jugo, Josu
    Elorza, Iker
    Alonso-Quesada, Santiago
    Pujana-Arrese, Aron
    [J]. ENERGIES, 2019, 12 (18)
  • [8] Wind Tunnel Wake Measurements of Floating Offshore Wind Turbines
    Bayati, I.
    Belloli, M.
    Bernini, L.
    Zasso, A.
    [J]. 14TH DEEP SEA OFFSHORE WIND R&D CONFERENCE, EERA DEEPWIND'2017, 2017, 137 : 214 - 222
  • [9] Combined current and wind simulation for floating offshore wind turbines
    Otter, A.
    Desmond, C.
    Flannery, B.
    Murphy, J.
    [J]. EERA DEEPWIND OFFSHORE WIND R&D CONFERENCE, DEEPWIND 2022, 2022, 2362
  • [10] Feedforward control for wave disturbance rejection on floating offshore wind turbines
    Al, M.
    Fontanella, A.
    van der Hoek, D.
    Liu, Y.
    Belloli, M.
    van Wingerden, J. W.
    [J]. SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2020), PTS 1-5, 2020, 1618