Effect of microbially induced calcite precipitation treatment on the bonding properties of steel fiber in ultra-high performance concrete

被引:65
|
作者
Zhang, Dong [1 ]
Shahin, Mohamed A. [2 ]
Yang, Yang [3 ]
Liu, Hanlong [3 ]
Cheng, Liang [4 ]
机构
[1] Fuzhou Univ, Coll Civil Engn, Fuzhou 350108, Peoples R China
[2] Curtin Univ, Sch Civil & Mech Engn, Perth, WA 6845, Australia
[3] Chongqing Univ, Sch Civil Engn, 174 Shazheng St, Chongqing 400045, Peoples R China
[4] Jiangsu Univ, Sch Environm & Safety Engn, Xuefu Rd 301, Zhenjiang 212013, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Ultra-high performance concrete; Microbially induced calcite precipitation; Steel fiber; CaCO3; Bonding; MECHANICAL-PROPERTIES; PULLOUT BEHAVIOR; HIGH-STRENGTH; MICROSTRUCTURE; SHRINKAGE; DESIGN; SHAPE;
D O I
10.1016/j.jobe.2022.104132
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Bonding performance between steel fiber and cement matrix is critical for the stress transformation and crack control, which significantly affects the mechanical properties of ultra-high performance concrete (UHPC). To enhance the fiber/matrix bond, this study proposed a microbiological technique to pretreat the steel fiber surface via microbially induced calcite precipitation (MICP) treatment. MICP generates calcium carbonate (CaCO3) crystals bonded on the surface of steel fiber, leading to an increase in roughness and hydrophilicity. The results obtained from single steel fiber pullout tests indicate that the bond strength and pullout energy of steel fiber are both increased by MICP treatment. The good bonding consequently resulted in more residual hydration products attached to the fiber surface after the pullout test. The tests on the UHPC samples with untreated and treated fiber confirmed the benefits of MICP treatment in improving the mechanical properties of UHPC. It is demonstrated that MICP treatment on steel fiber can increase the compressive and flexural strength of UHPC by -16% and-50%, respectively.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete
    Kang, Su-Tae
    Choi, Jeong-Il
    Koh, Kyung-Taek
    Lee, Kang Seok
    Lee, Bang Yeon
    COMPOSITE STRUCTURES, 2016, 145 : 37 - 42
  • [42] Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC)
    Habel, Katrin
    Viviani, Marco
    Denarie, Emmanuel
    Bruehwiler, Eugen
    CEMENT AND CONCRETE RESEARCH, 2006, 36 (07) : 1362 - 1370
  • [43] Steel Fiber-Matrix Interfacial Bond in Ultra-High Performance Concrete: A Review
    Deng, Yulin
    Zhang, Zuhua
    Shi, Caijun
    Wu, Zemei
    Zhang, Chaohui
    ENGINEERING, 2023, 22 : 215 - 232
  • [44] Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages
    Abbas, Safeer
    Soliman, Ahmed M.
    Nehdi, Moncef L.
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 75 : 429 - 441
  • [45] Effects of nano-silica and micro-steel fiber on the engineering properties of ultra-high performance concrete
    Hakeem, Ibrahim Y.
    Amin, Mohamed
    Abdelsalam, Bassam Abdelsalam
    Tayeh, Bassam A.
    Althoey, Fadi
    Agwa, Ibrahim Saad
    STRUCTURAL ENGINEERING AND MECHANICS, 2022, 82 (03) : 295 - 312
  • [46] Experimental relationships between steel fiber volume fraction and mechanical properties of ultra-high performance fiber-reinforced concrete
    Ashkezari, Ghasem Dehghani
    Fotouhi, Farzan
    Razmara, Mehrdad
    JOURNAL OF BUILDING ENGINEERING, 2020, 32
  • [47] Influence of steel slag and steel fiber on the mechanical properties, durability, and life cycle assessment of ultra-high performance geopolymer concrete
    Xu, Zikai
    Zhang, Jiupeng
    Zhang, Jiajun
    Deng, Qiquan
    Xue, Zhijia
    Huang, Guojing
    Huang, Xiaoming
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 441
  • [48] EFFECT OF LOW PRESSURE ON THE PROPERTIES AND MICROSTRUCTURE OF ULTRA-HIGH PERFORMANCE CONCRETE
    Wu, Xiong
    Yang, Wen
    Luo, Yaoling
    Yan, Xinyi
    Xie, Yuhao
    CERAMICS-SILIKATY, 2021, 65 (04) : 395 - 400
  • [49] Effect of casting geometry on distributions of segmented steel fibers in ultra-high performance fiber-reinforced concrete
    Pae, Junil
    Lee, Namkon
    Kim, Sungwook
    Moon, Juhyuk
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 350
  • [50] Effect of nanosilica on fiber pullout behavior and mechanical properties of strain hardening ultra-high performance concrete
    Li, Mingzhe
    Sun, Jialun
    Li, Lei
    Meng, Lingqi
    Wang, Shihe
    Wei, Jiuqi
    Mao, Jize
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 367