Effect of microbially induced calcite precipitation treatment on the bonding properties of steel fiber in ultra-high performance concrete

被引:65
|
作者
Zhang, Dong [1 ]
Shahin, Mohamed A. [2 ]
Yang, Yang [3 ]
Liu, Hanlong [3 ]
Cheng, Liang [4 ]
机构
[1] Fuzhou Univ, Coll Civil Engn, Fuzhou 350108, Peoples R China
[2] Curtin Univ, Sch Civil & Mech Engn, Perth, WA 6845, Australia
[3] Chongqing Univ, Sch Civil Engn, 174 Shazheng St, Chongqing 400045, Peoples R China
[4] Jiangsu Univ, Sch Environm & Safety Engn, Xuefu Rd 301, Zhenjiang 212013, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Ultra-high performance concrete; Microbially induced calcite precipitation; Steel fiber; CaCO3; Bonding; MECHANICAL-PROPERTIES; PULLOUT BEHAVIOR; HIGH-STRENGTH; MICROSTRUCTURE; SHRINKAGE; DESIGN; SHAPE;
D O I
10.1016/j.jobe.2022.104132
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Bonding performance between steel fiber and cement matrix is critical for the stress transformation and crack control, which significantly affects the mechanical properties of ultra-high performance concrete (UHPC). To enhance the fiber/matrix bond, this study proposed a microbiological technique to pretreat the steel fiber surface via microbially induced calcite precipitation (MICP) treatment. MICP generates calcium carbonate (CaCO3) crystals bonded on the surface of steel fiber, leading to an increase in roughness and hydrophilicity. The results obtained from single steel fiber pullout tests indicate that the bond strength and pullout energy of steel fiber are both increased by MICP treatment. The good bonding consequently resulted in more residual hydration products attached to the fiber surface after the pullout test. The tests on the UHPC samples with untreated and treated fiber confirmed the benefits of MICP treatment in improving the mechanical properties of UHPC. It is demonstrated that MICP treatment on steel fiber can increase the compressive and flexural strength of UHPC by -16% and-50%, respectively.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Influence of steel fiber distribution on splitting damage and transport properties of ultra-high performance concrete
    Li, Zhanguo
    Zhang, Hao
    Wang, Rui
    CEMENT & CONCRETE COMPOSITES, 2022, 126
  • [12] The Effects of Corrugated Steel Fiber on the Properties of Ultra-High Performance Concrete of Different Strength Levels
    Soloviev, Vadim
    Matiushin, Evgenii
    BUILDINGS, 2023, 13 (10)
  • [13] Development of ultra-high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties
    Liu, Yiwei
    Zhang, Zuhua
    Shi, Caijun
    Zhu, Deju
    Li, Ning
    Deng, Yulin
    CEMENT & CONCRETE COMPOSITES, 2020, 112
  • [14] Effect of Shrinkage Reducing Agent and Steel Fiber on the Fluidity and Cracking Performance of Ultra-High Performance Concrete
    Wan, Yong
    Li, Li
    Zou, Jiaxin
    Xiao, Hucheng
    Zhu, Mengdi
    Su, Ying
    Yang, Jin
    FDMP-FLUID DYNAMICS & MATERIALS PROCESSING, 2024, 20 (09): : 1941 - 1956
  • [15] Effect of Steel Fiber Volume Fraction on the Mechanical Behavior of Ultra-high Performance Concrete Composites
    Reddy, G. Gautham Kishore
    Ramadoss, P.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2022, 35 (07): : 1365 - 1374
  • [16] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Choi, Donguk
    Hong, Kyungchan
    Ochirbud, Munkhtuvshin
    Meiramov, Didar
    Sukontaskuul, Piti
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2023, 17 (01)
  • [17] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Donguk Choi
    Kyungchan Hong
    Munkhtuvshin Ochirbud
    Didar Meiramov
    Piti Sukontaskuul
    International Journal of Concrete Structures and Materials, 17
  • [18] Effect of Hollow 304 Stainless Steel Fiber on Corrosion Resistance and Mechanical Properties of Ultra-High Performance Concrete (UHPC)
    Li, Tianran
    Yan, Yulong
    Xu, Chengying
    Han, Xiangnan
    Liu, Yang
    Qi, Haiquan
    Ming, Yang
    MATERIALS, 2023, 16 (10)
  • [19] Interfacial Bond Performance Between Milling Steel Fiber and Ultra-high Performance Concrete
    Yang Y.
    Xia Y.
    Liu S.
    Xiao Q.
    Guo W.
    Wang H.
    Cailiao Daobao/Materials Reports, 2023, 37 (04):
  • [20] Uniaxial Compression Behavior of Ultra-High Performance Concrete with Hybrid Steel Fiber
    Wu, Zemei
    Shi, Caijun
    He, Wen
    Wang, Dehui
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2016, 28 (12)