Effect of microbially induced calcite precipitation treatment on the bonding properties of steel fiber in ultra-high performance concrete

被引:65
|
作者
Zhang, Dong [1 ]
Shahin, Mohamed A. [2 ]
Yang, Yang [3 ]
Liu, Hanlong [3 ]
Cheng, Liang [4 ]
机构
[1] Fuzhou Univ, Coll Civil Engn, Fuzhou 350108, Peoples R China
[2] Curtin Univ, Sch Civil & Mech Engn, Perth, WA 6845, Australia
[3] Chongqing Univ, Sch Civil Engn, 174 Shazheng St, Chongqing 400045, Peoples R China
[4] Jiangsu Univ, Sch Environm & Safety Engn, Xuefu Rd 301, Zhenjiang 212013, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Ultra-high performance concrete; Microbially induced calcite precipitation; Steel fiber; CaCO3; Bonding; MECHANICAL-PROPERTIES; PULLOUT BEHAVIOR; HIGH-STRENGTH; MICROSTRUCTURE; SHRINKAGE; DESIGN; SHAPE;
D O I
10.1016/j.jobe.2022.104132
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Bonding performance between steel fiber and cement matrix is critical for the stress transformation and crack control, which significantly affects the mechanical properties of ultra-high performance concrete (UHPC). To enhance the fiber/matrix bond, this study proposed a microbiological technique to pretreat the steel fiber surface via microbially induced calcite precipitation (MICP) treatment. MICP generates calcium carbonate (CaCO3) crystals bonded on the surface of steel fiber, leading to an increase in roughness and hydrophilicity. The results obtained from single steel fiber pullout tests indicate that the bond strength and pullout energy of steel fiber are both increased by MICP treatment. The good bonding consequently resulted in more residual hydration products attached to the fiber surface after the pullout test. The tests on the UHPC samples with untreated and treated fiber confirmed the benefits of MICP treatment in improving the mechanical properties of UHPC. It is demonstrated that MICP treatment on steel fiber can increase the compressive and flexural strength of UHPC by -16% and-50%, respectively.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Effect of Distinct Steel Fiber Types and Contents on the Flexural Properties of Ultra-High Performance Concrete
    Lai Y.-C.
    Lee M.-H.
    Tai Y.-S.
    Journal of the Chinese Institute of Civil and Hydraulic Engineering, 2022, 34 (05): : 387 - 396
  • [2] Influence of steel fiber on compressive properties of ultra-high performance fiber-reinforced concrete
    Yang, Jian
    Chen, Baochun
    Nuti, Camillo
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 302
  • [3] Effect of steel fiber on the compressive performance and microstructure of ultra-high performance concrete at elevated temperatures
    Gao, Danying
    Zhang, Wei
    Tang, Jiyu
    Zhu, Zhihao
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 435
  • [4] Effect of Fiber Hybridization on Durability Related Properties of Ultra-High Performance Concrete
    Smarzewski, Piotr
    Barnat-Hunek, Danuta
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2017, 11 (02) : 315 - 325
  • [5] Size Effect of Mechanical Properties of Hybrid Fiber Ultra-high Performance Concrete
    Wang L.
    Chi Y.
    Xu L.
    Liu S.
    Yin C.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2022, 25 (08): : 781 - 788
  • [6] Effect of Metakaolin on Rheological Properties and Fiber Distribution of Ultra-High Performance Concrete
    Zheng X.
    Han F.
    Liu J.
    Sha J.
    Lin W.
    Wan Y.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2021, 49 (11): : 2375 - 2383
  • [7] Effect of Fiber Hybridization on Durability Related Properties of Ultra-High Performance Concrete
    Piotr Smarzewski
    Danuta Barnat-Hunek
    International Journal of Concrete Structures and Materials, 2017, 11 : 315 - 325
  • [8] Flexural Properties of Ultra-high Performance Concrete Under Fiber Synergistic Effect
    Li F.
    Liu G.
    Liu M.
    Yang Z.
    Mu B.
    Su J.
    Jiang Y.
    Tongji Daxue Xuebao/Journal of Tongji University, 2023, 51 (12): : 1835 - 1844
  • [9] Micromechanical Analysis of Steel Fiber Corrosion in Ultra-high Performance Concrete
    Shu G.
    Zhang Q.
    Huang Y.
    Bu Y.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2019, 54 (06): : 1268 - 1276
  • [10] Enhancing fiber/matrix bonding in polypropylene fiber reinforced cementitious composites by microbially induced calcite precipitation pre-treatment
    Hao, Yifei
    Cheng, Liang
    Hao, Hong
    Shahin, Mohamed A.
    CEMENT & CONCRETE COMPOSITES, 2018, 88 : 1 - 7