Bayesian Nonparametric Weighted Sampling Inference

被引:49
|
作者
Si, Yajuan [1 ,2 ]
Pillai, Natesh S. [3 ]
Gelman, Andrew [4 ,5 ]
机构
[1] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Populat Hlth Sci, Madison, WI USA
[3] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
[4] Columbia Univ, Dept Stat, New York, NY USA
[5] Columbia Univ, Dept Polit Sci, New York, NY USA
来源
BAYESIAN ANALYSIS | 2015年 / 10卷 / 03期
基金
美国国家科学基金会;
关键词
survey weighting; poststratification; model-based survey inference; Gaussian process prior; Stan; PUBLIC-OPINION; DISTRIBUTIONS;
D O I
10.1214/14-BA924
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It has historically been a challenge to perform Bayesian inference in a design-based survey context. The present paper develops a Bayesian model for sampling inference in the presence of inverse-probability weights. We use a hierarchical approach in which we model the distribution of the weights of the nonsampled units in the population and simultaneously include them as predictors in a nonparametric Gaussian process regression. We use simulation studies to evaluate the performance of our procedure and compare it to the classical design-based estimator. We apply our method to the Fragile Family and Child Wellbeing Study. Our studies find the Bayesian nonparametric finite population estimator to be more robust than the classical design-based estimator without loss in efficiency, which works because we induce regularization for small cells and thus this is a way of automatically smoothing the highly variable weights.
引用
收藏
页码:605 / 625
页数:21
相关论文
共 50 条
  • [2] Nonparametric applications of Bayesian inference
    Chamberlain, G
    Imbens, GW
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2003, 21 (01) : 12 - 18
  • [3] Nonparametric Bayesian inference in applications
    Peter Müeller
    Fernando A. Quintana
    Garritt Page
    [J]. Statistical Methods & Applications, 2018, 27 : 175 - 206
  • [4] Nonparametric Bayesian inference in applications
    Mueeller, Peter
    Quintana, Fernando A.
    Page, Garritt
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02): : 175 - 206
  • [5] Discussion of “Nonparametric Bayesian Inference in Applications”: Bayesian nonparametric methods in econometrics
    Jim Griffin
    Maria Kalli
    Mark Steel
    [J]. Statistical Methods & Applications, 2018, 27 : 207 - 218
  • [6] Discussion of "Nonparametric Bayesian Inference in Applications": Bayesian nonparametric methods in econometrics
    Griffin, Jim
    Kalli, Maria
    Steel, Mark
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02): : 207 - 218
  • [7] Bayesian Nonparametric Modeling for Causal Inference
    Hill, Jennifer L.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (01) : 217 - 240
  • [8] BAYESIAN NONPARAMETRIC INFERENCE ON THE STIEFEL MANIFOLD
    Lin, Lizhen
    Rao, Vinayak
    Dunson, David
    [J]. STATISTICA SINICA, 2017, 27 (02) : 535 - 553
  • [9] Bayesian Nonparametric Inference for the Power Likelihood
    Antoniano-Villalobos, Isadora
    Walker, Stephen G.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (04) : 801 - 813
  • [10] Bayesian parametric inference in a nonparametric framework
    Walker, Stephen G.
    Gutierrez-Pena, Eduardo
    [J]. TEST, 2007, 16 (01) : 188 - 197