NONLINEAR SEQUENTIAL RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL AND INTEGRAL BOUNDARY CONDITIONS

被引:6
|
作者
Asawasamrit, Suphawat [1 ]
Phuangthong, Nawapol [1 ]
Ntouyas, Sotiris K. [2 ,3 ]
Tariboon, Jessada [1 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Intelligent & Nonlinear Dynam Innovat Res Ctr, Bangkok 10800, Thailand
[2] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
来源
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS | 2019年 / 17卷 / 01期
关键词
fractional derivatives; fractional integral; boundary value problems; existence; uniqueness; fixed point theorems; EXISTENCE;
D O I
10.28924/2291-8639-17-2019-47
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the existence and uniqueness of solutions for a new class of sequential fractional differential equations of Riemann-Liouville and Caputo types with nonlocal integral boundary conditions, by using standard fixed point theorems. We also demonstrate the application of the obtained results with the aid of examples.
引用
收藏
页码:47 / 63
页数:17
相关论文
共 50 条
  • [21] Positive solutions for fractional differential systems with nonlocal Riemann-Liouville fractional integral boundary conditions
    Neamprem, Khomsan
    Muensawat, Thanadon
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    POSITIVITY, 2017, 21 (03) : 825 - 845
  • [22] Existence Theorems for Mixed Riemann-Liouville and Caputo Fractional Differential Equations and Inclusions with Nonlocal Fractional Integro-Differential Boundary Conditions
    Ntouyas, Sotiris K.
    Alsaedi, Ahmed
    Ahmad, Bashir
    FRACTAL AND FRACTIONAL, 2019, 3 (02) : 1 - 20
  • [23] On a sequential fractional differential problem with Riemann-Liouville integral conditions
    Benmehidi, Hammou
    Dahmani, Zoubir
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (04) : 893 - 915
  • [24] EXISTENCE OF SOLUTIONS FOR FRACTIONAL DIFFERENTIAL INCLUSIONS WITH NONLOCAL RIEMANN-LIOUVILLE INTEGRAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Ntouyas, Sotiris
    MATHEMATICA BOHEMICA, 2014, 139 (03): : 451 - 465
  • [25] Riemann-Liouville fractional differential equations with Hadamard fractional integral conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Thiramanus, Phollakrit
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 54 (01): : 119 - 134
  • [26] On Caputo type sequential fractional differential equations with nonlocal integral boundary conditions
    Alsaedi, Ahmed
    Ntouyas, Sotiris K.
    Agarwal, Ravi P.
    Ahmad, Bashir
    ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 12
  • [27] On Caputo type sequential fractional differential equations with nonlocal integral boundary conditions
    Ahmed Alsaedi
    Sotiris K Ntouyas
    Ravi P Agarwal
    Bashir Ahmad
    Advances in Difference Equations, 2015
  • [28] Nonlocal Boundary Value Problems for Riemann-Liouville Fractional Differential Inclusions with Hadamard Fractional Integral Boundary Conditions
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    Thaiprayoon, Chatthai
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (01): : 91 - 107
  • [29] On the existence of solutions for nonlocal sequential boundary fractional differential equations via ψ-Riemann-Liouville derivative
    Haddouchi, Faouzi
    Samei, Mohammad Esmael
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [30] Boundary Value Problems for Riemann-Liouville Fractional Differential Inclusions with Nonlocal Hadamard Fractional Integral Conditions
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    Sudsutad, Weerawat
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (03) : 939 - 954