Finite-time availability in a quantum system

被引:10
|
作者
Hoffmann, K. H. [1 ]
Salamon, P. [2 ]
机构
[1] Tech Univ Chemnitz, Dept Phys, D-09107 Chemnitz, Germany
[2] San Diego State Univ, Dept Math Sci, San Diego, CA 92182 USA
关键词
EXTRACTION; WORK; BATH;
D O I
10.1209/0295-5075/109/40004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Classically, availability refers to the work available in any reversible process that brings about equilibrium between the system and its environment. Here we introduce an additional meaning of availability as the maximum work associated with the change of an external parameter in the Hamiltonian of a quantum system. This availability can be gained in a FEAT process and for times larger than or equal to the FEAT time, there exists an optimal control that achieves the available work. For shorter times, quantum friction effects are unavoidable and the available work is thereby lowered. This finite-time availability is quantified here as a function of the time available. Copyright (C) EPLA, 2015
引用
收藏
页数:6
相关论文
共 50 条
  • [1] QUANTUM FINITE-TIME AVAILABILITY
    Hoffmann, Karl Heinz
    Salamon, Peter
    Schmidt, Kim
    [J]. ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2019, 97
  • [2] Finite-time quantum thermodynamic processes
    T. Jahnke
    J. Birjukov
    G. Mahler
    [J]. The European Physical Journal Special Topics, 2007, 151 : 167 - 180
  • [3] Finite-time quantum thermodynamic processes
    Jahnke, T.
    Birjukov, J.
    Mahler, G.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 151 (1): : 167 - 180
  • [4] Finite-Time Quantum Landauer Principle and Quantum Coherence
    Vu, Tan Van
    Saito, Keiji
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (01)
  • [5] Finite-time control for a UAV system based on finite-time disturbance observer
    Huang, Deqing
    Huang, Tianpeng
    Qin, Na
    Li, Yanan
    Yang, Yong
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 129
  • [6] TIME EVOLUTION OF UNSTEADY-STATE QUANTUM SYSTEM OVER A FINITE-TIME INTERVAL
    AGIBALOV, AV
    KUZHIR, PG
    [J]. DOKLADY AKADEMII NAUK BELARUSI, 1988, 32 (05): : 409 - 412
  • [7] Finite-time stability of quantum systems with impulses
    Yang, Wei
    Sun, Jitao
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2014, 8 (08): : 641 - 646
  • [8] ON THE CLASSICAL LIMIT OF QUANTUM THERMODYNAMICS IN FINITE-TIME
    GEVA, E
    KOSLOFF, R
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (06): : 4398 - 4412
  • [9] Finite-time stabilization control of quantum systems
    Kuang, Sen
    Guan, Xiaoke
    Dong, Daoyi
    [J]. AUTOMATICA, 2021, 123
  • [10] A Study on Finite-time Stability of Switched Linear System with Finite-time Unstable Subsystems
    Tan, Jialin
    Wang, Weiqun
    Yao, Juan
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 88 - 93