QUANTUM FINITE-TIME AVAILABILITY

被引:2
|
作者
Hoffmann, Karl Heinz [1 ]
Salamon, Peter [2 ]
Schmidt, Kim [1 ]
机构
[1] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
[2] San Diego State Univ, Dept Math Sci, San Diego, CA 92182 USA
关键词
THERMODYNAMICS; TRANSITIONS; PATHS;
D O I
10.1478/AAPP.97S1A10
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The availability of a thermodynamic system with respect to an environment is the maximum work, which can be gained from bringing it into equilibrium with its environment by a reversible process. If the process has to proceed in finite time, there will be unavoidable losses diminishing the availability; this consequence is captured by the Finite-Time Availability. Here we consider the consequences of an availability extracting process for a paradigmatic quantum system, the parametric harmonic oscillator. Differences and similarities between its Quantum Finite-Time Availability and the classical Finite-Time Availability of an ideal gas in a cylinder with a piston are discussed.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Finite-time availability in a quantum system
    Hoffmann, K. H.
    Salamon, P.
    [J]. EPL, 2015, 109 (04)
  • [2] Finite-time quantum thermodynamic processes
    T. Jahnke
    J. Birjukov
    G. Mahler
    [J]. The European Physical Journal Special Topics, 2007, 151 : 167 - 180
  • [3] Finite-time quantum thermodynamic processes
    Jahnke, T.
    Birjukov, J.
    Mahler, G.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 151 (1): : 167 - 180
  • [4] Finite-Time Quantum Landauer Principle and Quantum Coherence
    Vu, Tan Van
    Saito, Keiji
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (01)
  • [5] Finite-time stability of quantum systems with impulses
    Yang, Wei
    Sun, Jitao
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2014, 8 (08): : 641 - 646
  • [6] ON THE CLASSICAL LIMIT OF QUANTUM THERMODYNAMICS IN FINITE-TIME
    GEVA, E
    KOSLOFF, R
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (06): : 4398 - 4412
  • [7] Finite-time stabilization control of quantum systems
    Kuang, Sen
    Guan, Xiaoke
    Dong, Daoyi
    [J]. AUTOMATICA, 2021, 123
  • [8] Finite-time quantum Stirling heat engine
    Hamedani Raja, S.
    Maniscalco, S.
    Paraoanu, G. S.
    Pekola, J. P.
    Lo Gullo, N.
    [J]. NEW JOURNAL OF PHYSICS, 2021, 23 (03):
  • [9] AVAILABILITY FOR FINITE-TIME PROCESSES - GENERAL-THEORY AND A MODEL
    ANDRESEN, B
    RUBIN, MH
    BERRY, RS
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1983, 87 (15): : 2704 - 2713
  • [10] Quantum finite time availability for parametric oscillators
    Hoffmann, Karl Heinz
    Schmidt, Kim
    Salamon, Peter
    [J]. JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2015, 40 (02) : 121 - 129