Finite-time availability in a quantum system

被引:10
|
作者
Hoffmann, K. H. [1 ]
Salamon, P. [2 ]
机构
[1] Tech Univ Chemnitz, Dept Phys, D-09107 Chemnitz, Germany
[2] San Diego State Univ, Dept Math Sci, San Diego, CA 92182 USA
关键词
EXTRACTION; WORK; BATH;
D O I
10.1209/0295-5075/109/40004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Classically, availability refers to the work available in any reversible process that brings about equilibrium between the system and its environment. Here we introduce an additional meaning of availability as the maximum work associated with the change of an external parameter in the Hamiltonian of a quantum system. This availability can be gained in a FEAT process and for times larger than or equal to the FEAT time, there exists an optimal control that achieves the available work. For shorter times, quantum friction effects are unavoidable and the available work is thereby lowered. This finite-time availability is quantified here as a function of the time available. Copyright (C) EPLA, 2015
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Superadiabatic quantum friction suppression in finite-time thermodynamics
    Deng, Shujin
    Chenu, Aurelia
    Diao, Pengpeng
    Li, Fang
    Yu, Shi
    Coulamy, Ivan
    del Campo, Adolfo
    Wu, Haibin
    [J]. SCIENCE ADVANCES, 2018, 4 (04):
  • [22] Collective performance of a finite-time quantum Otto cycle
    Kloc, Michal
    Cejnar, Pavel
    Schaller, Gernot
    [J]. PHYSICAL REVIEW E, 2019, 100 (04)
  • [23] Quantum Otto refrigerators in finite-time cycle period
    Jiao, Guangqian
    Xiao, Yang
    He, Jizhou
    Ma, Yongli
    Wang, Jianhui
    [J]. NEW JOURNAL OF PHYSICS, 2021, 23 (06):
  • [24] Power fluctuations in a finite-time quantum Carnot engine
    Denzler, Tobias
    Lutz, Eric
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [25] Quantum-enhanced finite-time Otto cycle
    Das, Arpan
    Mukherjee, Victor
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [26] Bounds on fluctuations for finite-time quantum Otto cycle
    Saryal, Sushant
    Agarwalla, Bijay Kumar
    [J]. PHYSICAL REVIEW E, 2021, 103 (06)
  • [27] The Quantum Friction and Optimal Finite-Time Performance of the Quantum Otto Cycle
    Insinga, Andrea R.
    [J]. ENTROPY, 2020, 22 (09)
  • [28] Bounded finite-time stabilization of the Rossler system
    Choque-Rivero, Abdon E.
    Cruz Mullisaca, Efrain
    Gomez Orozco, Blanca de Jesus
    [J]. 2019 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC 2019), 2019,
  • [29] SYSTEM IDENTIFIABILITY FROM FINITE-TIME SERIES
    HEIJ, C
    [J]. AUTOMATICA, 1993, 29 (04) : 1065 - 1077
  • [30] Finite-Time Parameters Estimation of the Chua System
    Chiaravalloti, Francesco
    D'Alfonso, Luigi
    D'Aquila, Gaetano
    Fedele, Giuseppe
    Parisini, Thomas
    Pin, Gilberto
    [J]. NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA-2016), 2016, 1776