Implementation of Multiple-Precision Floating-Point Arithmetic on Intel Xeon Phi Coprocessors

被引:1
|
作者
Takahashi, Daisuke [1 ]
机构
[1] Univ Tsukuba, Ctr Computat Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
关键词
ALGORITHM; DIVISION;
D O I
10.1007/978-3-319-42108-7_5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose an implementation of multiple-precision floating-point addition, subtraction, multiplication, division and square root on Intel Xeon Phi coprocessors. Using propagated carries in multiple-precision floating-point addition is a major obstacle to vectorization and parallelization. By using the carry skip method, the operation of performing propagated carries in the multiple-precision floating-point addition can be vectorized and parallelized. A parallel implementation of floating-point real FFT-based multiplication is presented, as multiplication is a fundamental operation in fast multiple-precision arithmetic. The experimental results of multiple-precision floating-point addition, multiplication, division and square root operations on an Intel Xeon Phi 5110P are then reported.
引用
收藏
页码:60 / 70
页数:11
相关论文
共 50 条
  • [1] ALGORITHM 693 - A FORTRAN PACKAGE FOR FLOATING-POINT MULTIPLE-PRECISION ARITHMETIC
    SMITH, DM
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1991, 17 (02): : 273 - 283
  • [2] A Modular-Positional Computation Technique for Multiple-Precision Floating-Point Arithmetic
    Isupov, Konstantin
    Knyazkov, Vladimir
    PARALLEL COMPUTING TECHNOLOGIES (PACT 2015), 2015, 9251 : 47 - 61
  • [3] Lattice QCD on Intel® Xeon Phi™ Coprocessors
    Joo, Balint
    Kalamkar, Dhiraj D.
    Vaidyanathan, Karthikeyan
    Smelyanskiy, Mikhail
    Pamnany, Kiran
    Lee, Victor W.
    Dubey, Pradeep
    Watson, William, III
    SUPERCOMPUTING (ISC 2013), 2013, 7905 : 40 - 54
  • [4] Communication Models for Distributed Intel Xeon Phi Coprocessors
    Neuwirth, Sarah
    Frey, Dirk
    Bruening, Ulrich
    2015 IEEE 21ST INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2015, : 499 - 506
  • [5] Effective SIMD Vectorization for Intel Xeon Phi Coprocessors
    Tian, Xinmin
    Saito, Hideki
    Preis, Serguei V.
    Garcia, Eric N.
    Kozhukhov, Sergey S.
    Masten, Matt
    Cherkasov, Aleksei G.
    Panchenko, Nikolay
    SCIENTIFIC PROGRAMMING, 2015, 2015
  • [6] Multiple precision floating-point arithmetic on SIMD processors
    van der Hoeven, Joris
    2017 IEEE 24TH SYMPOSIUM ON COMPUTER ARITHMETIC (ARITH), 2017, : 2 - 9
  • [7] A MULTIPLE-PRECISION FLOATING-POINT INTERPRETIVE PROGRAM FOR CONTROL DATA 1604
    STROUD, AH
    SECREST, D
    COMPUTER JOURNAL, 1963, 6 (01): : 62 - &
  • [8] (FLOATING-POINT DYNAMIC-VARIABLE-RANGE MULTIPLE-PRECISION OPERATORS)
    FRECON, L
    CLAIRE, L
    ELECTRONICS LETTERS, 1972, 8 (08) : 191 - &
  • [9] Exploring SIMD for Molecular Dynamics, Using Intel®Xeon®Processors and Intel®Xeon Phi™ Coprocessors
    Pennycook, S. J.
    Hughes, C. J.
    Smelyanskiy, M.
    Jarvis, S. A.
    IEEE 27TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2013), 2013, : 1085 - 1097
  • [10] MPFR: A multiple-precision binary floating-point library with correct rounding
    Fousse, Laurent
    Hanrot, Guillaume
    Leflvre, Vincent
    Plissier, Patrick
    Zimmermann, Paul
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (02):