共 50 条
Reduced physiologically-based pharmacokinetic model of dabigatran etexilate-dabigatran and its application for prediction of intestinal P-gp-mediated drug-drug interactions
被引:7
|作者:
Lang, Jennifer
[1
]
Vincent, Ludwig
[2
]
Chenel, Marylore
[3
]
Ogungbenro, Kayode
[1
]
Galetin, Aleksandra
[1
]
机构:
[1] Univ Manchester, Ctr Appl Pharmacokinet Res, Div Pharm & Optometry, Sch Hlth Sci,Fac Biol Med & Hlth,Manchester Acad, Manchester M13 9PT, Lancs, England
[2] Technol Servier, Orleans, France
[3] Inst Rech Int Servier, Suresnes, France
关键词:
Physiologically-based-pharmacokinetic;
modelling;
Dabigatran etexilate;
P-gp transport;
Drug-Drug Interactions;
DIRECT THROMBIN INHIBITOR;
IN VIVO EXTRAPOLATION;
ORAL BIOAVAILABILITY;
1ST-PASS METABOLISM;
TISSUE DISTRIBUTION;
CLINICAL-RELEVANCE;
GLYCOPROTEIN;
DIGOXIN;
TRANSPORTERS;
EXPRESSION;
D O I:
10.1016/j.ejps.2021.105932
中图分类号:
R9 [药学];
学科分类号:
1007 ;
摘要:
Background: Dabigatran etexilate (DABE) has been suggested as a clinical probe for intestinal P-glycoprotein (Pgp)-mediated drug-drug interaction (DDI) studies and, as an alternative to digoxin. Clinical DDI data with various P-gp inhibitors demonstrated a dose-dependent inhibition of P-gp with DABE. The aims of this study were to develop a joint DABE (prodrug)-dabigatran reduced physiologically-based-pharmacokinetic (PBPK) model and to evaluate its ability to predict differences in P-gp DDI magnitude between a microdose and a therapeutic dose of DABE. Methods: A joint DABE-dabigatran PBPK model was developed with a mechanistic intestinal model accounting for the regional P-gp distribution in the gastrointestinal tract. Model input parameters were estimated using DABE and dabigatran pharmacokinetic (PK) clinical data obtained after administration of DABE alone or with a strong P-gp inhibitor, itraconazole, and over a wide range of DABE doses (from 375 mu g to 400 mg). Subsequently, the model was used to predict extent of DDI with additional P-gp inhibitors and with different DABE doses. Results: The reduced DABE-dabigatran PBPK model successfully described plasma concentrations of both prodrug and metabolite following administration of DABE at different dose levels and when co-administered with itraconazole. The model was able to capture the dose dependency in P-gp mediated DDI. Predicted magnitude of itraconazole P-gp DDI was higher at the microdose (predicted vs. observed median fold-increase in AUC+inh/ AUCcontrol (min-max) = 5.88 (4.29-7.93) vs. 6.92 (4.96-9.66) ) compared to the therapeutic dose (predicted median fold-increase in AUC+inh/AUCcontrol = 3.48 (2.37-4.84) ). In addition, the reduced DABE-dabigatran PBPK model predicted successfully the extent of DDI with verapamil and clarithromycin as P-gp inhibitors. Model-based simulations of dose staggering predicted the maximum inhibition of P-gp when DABE microdose was concomitantly administered with itraconazole solution; simulations also highlighted dosing intervals required to minimise the DDI risk depending on the DABE dose administered (microdose vs. therapeutic). Conclusions: This study provides a modelling framework for the evaluation of P-gp inhibitory potential of new molecular entities using DABE as a clinical probe. Simulations of dose staggering and regional differences in the extent of intestinal P-gp inhibition for DABE microdose and therapeutic dose provide model-based guidance for design of prospective clinical P-gp DDI studies.
引用
收藏
页数:14
相关论文