Reduced physiologically-based pharmacokinetic model of dabigatran etexilate-dabigatran and its application for prediction of intestinal P-gp-mediated drug-drug interactions

被引:7
|
作者
Lang, Jennifer [1 ]
Vincent, Ludwig [2 ]
Chenel, Marylore [3 ]
Ogungbenro, Kayode [1 ]
Galetin, Aleksandra [1 ]
机构
[1] Univ Manchester, Ctr Appl Pharmacokinet Res, Div Pharm & Optometry, Sch Hlth Sci,Fac Biol Med & Hlth,Manchester Acad, Manchester M13 9PT, Lancs, England
[2] Technol Servier, Orleans, France
[3] Inst Rech Int Servier, Suresnes, France
关键词
Physiologically-based-pharmacokinetic; modelling; Dabigatran etexilate; P-gp transport; Drug-Drug Interactions; DIRECT THROMBIN INHIBITOR; IN VIVO EXTRAPOLATION; ORAL BIOAVAILABILITY; 1ST-PASS METABOLISM; TISSUE DISTRIBUTION; CLINICAL-RELEVANCE; GLYCOPROTEIN; DIGOXIN; TRANSPORTERS; EXPRESSION;
D O I
10.1016/j.ejps.2021.105932
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background: Dabigatran etexilate (DABE) has been suggested as a clinical probe for intestinal P-glycoprotein (Pgp)-mediated drug-drug interaction (DDI) studies and, as an alternative to digoxin. Clinical DDI data with various P-gp inhibitors demonstrated a dose-dependent inhibition of P-gp with DABE. The aims of this study were to develop a joint DABE (prodrug)-dabigatran reduced physiologically-based-pharmacokinetic (PBPK) model and to evaluate its ability to predict differences in P-gp DDI magnitude between a microdose and a therapeutic dose of DABE. Methods: A joint DABE-dabigatran PBPK model was developed with a mechanistic intestinal model accounting for the regional P-gp distribution in the gastrointestinal tract. Model input parameters were estimated using DABE and dabigatran pharmacokinetic (PK) clinical data obtained after administration of DABE alone or with a strong P-gp inhibitor, itraconazole, and over a wide range of DABE doses (from 375 mu g to 400 mg). Subsequently, the model was used to predict extent of DDI with additional P-gp inhibitors and with different DABE doses. Results: The reduced DABE-dabigatran PBPK model successfully described plasma concentrations of both prodrug and metabolite following administration of DABE at different dose levels and when co-administered with itraconazole. The model was able to capture the dose dependency in P-gp mediated DDI. Predicted magnitude of itraconazole P-gp DDI was higher at the microdose (predicted vs. observed median fold-increase in AUC+inh/ AUCcontrol (min-max) = 5.88 (4.29-7.93) vs. 6.92 (4.96-9.66) ) compared to the therapeutic dose (predicted median fold-increase in AUC+inh/AUCcontrol = 3.48 (2.37-4.84) ). In addition, the reduced DABE-dabigatran PBPK model predicted successfully the extent of DDI with verapamil and clarithromycin as P-gp inhibitors. Model-based simulations of dose staggering predicted the maximum inhibition of P-gp when DABE microdose was concomitantly administered with itraconazole solution; simulations also highlighted dosing intervals required to minimise the DDI risk depending on the DABE dose administered (microdose vs. therapeutic). Conclusions: This study provides a modelling framework for the evaluation of P-gp inhibitory potential of new molecular entities using DABE as a clinical probe. Simulations of dose staggering and regional differences in the extent of intestinal P-gp inhibition for DABE microdose and therapeutic dose provide model-based guidance for design of prospective clinical P-gp DDI studies.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] PREDICTION OF DRUG-DRUG INTERACTION OF ENSITRELVIR AS CYP3A SUBSTRATE USING PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL
    Horiuchi, Kana
    DRUG METABOLISM AND PHARMACOKINETICS, 2024, 55
  • [32] PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODELING (PBPK) OF PITAVASTATIN AND ATORVASTATIN TO PREDICT DRUG-DRUG INTERACTIONS (DDIS).
    Duan, P.
    Zhao, P.
    Zhang, L.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2015, 97 : S16 - S17
  • [33] Modeling the complexity of drug-drug interactions: A physiologically-based pharmacokinetic study of Lenvatinib with Schisantherin A/Schisandrin A
    Zheng, Aole
    Yang, Dongsheng
    Pan, Chunyang
    He, Qingfeng
    Zhu, Xiao
    Xiang, Xiaoqiang
    Ji, Peiying
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2024, 196
  • [34] PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELING OF SARPOGRELATE AND ITS APPLICATION FOR PREDICTION OF DRUG-DRUG INTERACTION IN HUMANS
    Min, Jee Sun
    Kim, Doyun
    Park, Jung Bae
    Heo, Hyunjin
    Bae, Soo Hyeon
    Bae, Soo Kyung
    DRUG METABOLISM AND PHARMACOKINETICS, 2017, 32 (01) : S53 - S53
  • [35] Physiologically-based pharmacokinetic modeling of prominent oral contraceptive agents and applications in drug-drug interactions
    Lewis, Gareth J.
    Ahire, Deepak
    Taskar, Kunal S.
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2024, 13 (04): : 563 - 575
  • [36] Physiologically-based pharmacokinetic predictions of intestinal BCRP-mediated drug interactions of rosuvastatin in Koreans
    Bae, Soo Hyeon
    Park, Wan-Su
    Han, Seunghoon
    Park, Gab-jin
    Lee, Jongtae
    Hong, Taegon
    Jeon, Sangil
    Yim, Dong-Seok
    KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY, 2018, 22 (03): : 321 - 329
  • [37] Applied physiologically-based pharmacokinetic modeling to assess uridine diphosphate-glucuronosyltransferase-mediated drug-drug interactions for Vericiguat
    Frechen, Sebastian
    Ince, Ibrahim
    Dallmann, Andre
    Gerisch, Michael
    Jungmann, Natalia A.
    Becker, Corina
    Lobmeyer, Maximilian
    Trujillo, Maria E.
    Xu, Shiyao
    Burghaus, Rolf
    Meyer, Michaela
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2024, 13 (01): : 79 - 92
  • [38] Comprehensive Physiologically Based Pharmacokinetic Model to Assess Drug-Drug Interactions of Phenytoin
    Rodriguez-Vera, Leyanis
    Yin, Xuefen
    Almoslem, Mohammed
    Romahn, Karolin
    Cicali, Brian
    Lukacova, Viera
    Cristofoletti, Rodrigo
    Schmidt, Stephan
    PHARMACEUTICS, 2023, 15 (10)
  • [39] Prediction of Drug-Drug Interactions After Esketamine Intranasal Administration Using a Physiologically Based Pharmacokinetic Model
    Willemin, Marie-Emilie
    Zannikos, Peter
    Mannens, Geert
    de Zwart, Loeckie
    Snoeys, Jan
    CLINICAL PHARMACOKINETICS, 2022, 61 (08) : 1115 - 1128
  • [40] Prediction of drug-drug interactions between various antidepressants and ritonavir using a physiologically based pharmacokinetic model
    Siccardi, M.
    Marzolini, C.
    Seden, K.
    Almond, L.
    Kirov, A.
    Khoo, S.
    Owen, A.
    Back, D.
    JOURNAL OF THE INTERNATIONAL AIDS SOCIETY, 2012, 15 : 60 - 60