Automated machine learning of accurate many-body potentials for molecular simulations

被引:0
|
作者
Bull-Vulpe, Ethan [1 ]
Ganapathy, Kaushik [2 ]
Riera, Marc [2 ]
Zhai, Yaoguang [1 ]
Paesani, Francesco [2 ]
Goetz, Andreas [1 ]
Brown, Sandra [2 ]
机构
[1] Univ Calif San Diego, San Diego Supercomp Ctr, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Chem & Biochem, La Jolla, CA 92093 USA
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
166
引用
收藏
页数:1
相关论文
共 50 条
  • [21] Computational aspects of many-body potentials
    Plimpton, Steven J.
    Thompson, Aidan P.
    MRS BULLETIN, 2012, 37 (05) : 513 - 521
  • [22] Optimizing many-body atomic descriptors for enhanced computational performance of machine learning based interatomic potentials
    Caro, Miguel A.
    PHYSICAL REVIEW B, 2019, 100 (02)
  • [23] Computational aspects of many-body potentials
    Steven J. Plimpton
    Aidan P. Thompson
    MRS Bulletin, 2012, 37 : 513 - 521
  • [24] Atomistic uniaxial tension tests: investigating various many-body potentials for their ability to produce accurate stress strain curves using molecular dynamics simulations
    Morrissey, Liam S.
    Handrigan, Stephen M.
    Subedi, Sabir
    Nakhla, Sam
    MOLECULAR SIMULATION, 2019, 45 (06) : 501 - 508
  • [25] Quantum vibrational state-dependent potentials for classical many-body simulations
    Riga, JM
    Fredj, E
    Martens, CC
    JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (17):
  • [26] Certificates of quantum many-body properties assisted by machine learning
    Requena, Borja
    Munoz-Gil, Gorka
    Lewenstein, Maciej
    Dunjko, Vedran
    Tura, Jordi
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [27] Learning what a machine learns in a many-body localization transition
    Kausar, Rubah
    Rao, Wen-Jia
    Wan, Xin
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (41)
  • [28] Machine-Learning-Assisted Many-Body Entanglement Measurement
    Gray, Johnnie
    Banchi, Leonardo
    Bayat, Abolfazl
    Bose, Sougato
    PHYSICAL REVIEW LETTERS, 2018, 121 (15)
  • [29] Provably efficient machine learning for quantum many-body problems
    Huang, Hsin-Yuan
    Kueng, Richard
    Torlai, Giacomo
    Albert, Victor V.
    Preskill, John
    SCIENCE, 2022, 377 (6613) : 1397 - +
  • [30] NetKet: A machine learning toolkit for many-body quantum systems
    Carleo, Giuseppe
    Choo, Kenny
    Hofmann, Damian
    Smith, James E. T.
    Westerhout, Tom
    Alet, Fabien
    Davis, Emily J.
    Efthymiou, Stavros
    Glasser, Ivan
    Lin, Sheng-Hsuan
    Mauri, Marta
    Mazzola, Guglielmo
    Mendl, Christian B.
    van Nieuwenburg, Evert
    O'Reilly, Ossian
    Theveniaut, Hugo
    Torlai, Giacomo
    Vicentini, Filippo
    Wietek, Alexander
    SOFTWAREX, 2019, 10