A Low-Rank Tensor Model for Hyperspectral Image Sparse Noise Removal

被引:2
|
作者
Deng, Lizhen [1 ]
Zhu, Hu [1 ]
Li, Yujie [2 ,3 ]
Yang, Zhen [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Jiangsu, Peoples R China
[2] Yangzhou Univ, Sch Informat Engn, Yangzhou 225127, Jiangsu, Peoples R China
[3] Fukuoka Univ, Fac Engn, Fukuoka, Fukuoka 8140180, Japan
来源
IEEE ACCESS | 2018年 / 6卷
基金
中国博士后科学基金;
关键词
Hyperspectral image; sparse noise removal; low-rank; tensor; DECOMPOSITION; RECOVERY;
D O I
10.1109/ACCESS.2018.2876038
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperspectral image (HSI) has been widely used in target detection and classification. However, various kinds of noise in HSIs affect the applications of HSIs. In this paper, we propose a low-rank (LR) tensor recovery model to remove noise. Considering that the HSI is a 3-D HSI data, and the underlying LR tensor property is used in the model. Then, according to the similarity of adjacent bands images, the regularization on the difference of adjacent bands images is considered. The experiments of removing noise from different noisy HSIs show that our method can achieve better performance on removing sparse noise, especially for strips removal.
引用
收藏
页码:62120 / 62127
页数:8
相关论文
共 50 条
  • [21] Low-Rank and Sparse Representation for Hyperspectral Image Processing: A Review
    Peng, Jiangtao
    Sun, Weiwei
    Li, Heng-Chao
    Li, Wei
    Meng, Xiangchao
    Ge, Chiru
    Du, Qian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (01) : 10 - 43
  • [22] Hyperspectral Image Classification with Low-Rank Subspace and Sparse Representation
    Sumarsono, Alex
    Du, Qian
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2864 - 2867
  • [23] Local Low-Rank and Sparse Representation for Hyperspectral Image Denoising
    Ma, Guanqun
    Huang, Ting-Zhu
    Haung, Jie
    Zheng, Chao-Chao
    [J]. IEEE ACCESS, 2019, 7 : 79850 - 79865
  • [24] DEEP SPARSE AND LOW-RANK PRIOR FOR HYPERSPECTRAL IMAGE DENOISING
    Nguyen, Han V.
    Ulfarsson, Magnus O.
    Sigurdsson, Jakob
    Sveinsson, Johannes R.
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1217 - 1220
  • [25] Sparse Unmixing for Hyperspectral Image with Nonlocal Low-Rank Prior
    Zheng, Yuhui
    Wu, Feiyang
    Shim, Hiuk Jae
    Sun, Le
    [J]. REMOTE SENSING, 2019, 11 (24)
  • [26] Sparse Unmixing for Hyperspectral Image with Nonlocal Low-Rank Prior
    Wu, Feiyang
    Zheng, Yuhui
    Sun, Le
    [J]. INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I, 2019, 11935 : 506 - 516
  • [27] Sparse and Low-Rank Tensor Decomposition
    Shah, Parikshit
    Rao, Nikhil
    Tang, Gongguo
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [28] Incremental Dictionary Learning-Driven Tensor Low-Rank and Sparse Representation for Hyperspectral Image Classification
    Xue, Zhaohui
    Nie, Xiangyu
    Zhang, Mengxue
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [29] HYPERSPECTRAL IMAGE DENOISING USING LOW-RANK AND SPARSE MODEL BASED DEEP UNROLLING
    Zhao, Bin
    Ulfarsson, Magnus O.
    Sigurdsson, Jakob
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5818 - 5821
  • [30] Removal of Mixed Noise in Hyperspectral Images Based on Subspace Representation and Nonlocal Low-Rank Tensor Decomposition
    He, Chun
    Wei, Youhua
    Guo, Ke
    Han, Hongwei
    [J]. SENSORS, 2024, 24 (02)