Local Low-Rank and Sparse Representation for Hyperspectral Image Denoising

被引:13
|
作者
Ma, Guanqun [1 ]
Huang, Ting-Zhu [1 ]
Haung, Jie [1 ]
Zheng, Chao-Chao [2 ]
机构
[1] Univ Elect Sci & Technol China, Res Ctr Image & Vis Comp, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Hong Kong, Peoples R China
关键词
Hyperspectral image denoising; local low rankness; sparse representation; weighted nuclear norm; NUCLEAR NORM MINIMIZATION; CLASSIFICATION; DICTIONARIES; ALGORITHM; TARGETS;
D O I
10.1109/ACCESS.2019.2923255
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperspectral image ( HSI) denoising is a fundamental task in a plethora of HSI applications. Global low-rank property is widely adopted to exploit the spectral-spatial information of HSIs, providing satisfactory denoising results. In this paper, instead of adopting the global low-rank property, we propose to adopt a local low rankness for HSI denoising. We develop an HSI denoising method via local low-rank and sparse representation, under an alternative minimization framework. In addition, the weighted nuclear norm is used to enhance the sparsity on singular values. The experiments on widely used hyperspectral datasets demonstrate that the proposed method outperforms several state-of-the-art methods visually and quantitatively.
引用
收藏
页码:79850 / 79865
页数:16
相关论文
共 50 条
  • [1] Hyperspectral Image Denoising via Sparse Representation and Low-Rank Constraint
    Zhao, Yong-Qiang
    Yang, Jingxiang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (01): : 296 - 308
  • [2] DEEP SPARSE AND LOW-RANK PRIOR FOR HYPERSPECTRAL IMAGE DENOISING
    Nguyen, Han V.
    Ulfarsson, Magnus O.
    Sigurdsson, Jakob
    Sveinsson, Johannes R.
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1217 - 1220
  • [3] Hyperspectral image denoising with superpixel segmentation and low-rank representation
    Fan, Fan
    Ma, Yong
    Li, Chang
    Mei, Xiaoguang
    Huang, Jun
    Ma, Jiayi
    [J]. INFORMATION SCIENCES, 2017, 397 : 48 - 68
  • [4] Image Denoising Using Low-Rank Dictionary and Sparse Representation
    Li, Tao
    Wang, Weiwei
    Feng, Xiangchu
    Xu, Long
    [J]. 2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 228 - 232
  • [5] Low-Rank and Sparse Representation for Hyperspectral Image Processing: A Review
    Peng, Jiangtao
    Sun, Weiwei
    Li, Heng-Chao
    Li, Wei
    Meng, Xiangchao
    Ge, Chiru
    Du, Qian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (01) : 10 - 43
  • [6] Hyperspectral Image Classification with Low-Rank Subspace and Sparse Representation
    Sumarsono, Alex
    Du, Qian
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2864 - 2867
  • [7] Hyperspectral Image Denoising With Group Sparse and Low-Rank Tensor Decomposition
    Huang, Zhihong
    Li, Shutao
    Fang, Leyuan
    Li, Huali
    Benediktsson, Jon Atli
    [J]. IEEE ACCESS, 2018, 6 : 1380 - 1390
  • [8] Coupled Sparse Denoising and Unmixing With Low-Rank Constraint for Hyperspectral Image
    Yang, Jingxiang
    Zhao, Yong-Qiang
    Chan, Jonathan Cheung-Wai
    Kong, Seong G.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (03): : 1818 - 1833
  • [9] HYPERSPECTRAL IMAGE DENOISING BASED ON LOW-RANK REPRESENTATION AND SUPERPIXEL SEGMENTATION
    Ma, Jiayi
    Li, Chang
    Ma, Yong
    Wang, Zhongyuan
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 3086 - 3090
  • [10] Hyperspectral Image Denoising via Low-Rank Representation and CNN Denoiser
    Sun, Hezhi
    Liu, Ming
    Zheng, Ke
    Yang, Dong
    Li, Jindong
    Gao, Lianru
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 716 - 728