Soliton solutions to a reverse-time non-local nonlinear Schrodinger differential equation

被引:5
|
作者
Huang, Qiaofeng [1 ]
Ruan, Chenzhi [1 ]
Huang, Zishan [1 ]
Huang, Jiaxing [2 ]
机构
[1] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Guangdong, Peoples R China
[2] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Guangdong, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2022年 / 97卷 / 01期
关键词
KP hierarchy reduction; parity-time symmetry; Hirota's bilinearity; non-local nonlinear Schrodinger equation; soliton; INVERSE SCATTERING TRANSFORM; RATIONAL SOLUTIONS; ZERO;
D O I
10.1007/s12043-022-02491-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Under vanishing and non-vanishing boundary conditions, we consider general soliton solutions of a fully PT-symmetric multidimensional non-local nolinear Schrodinger equation with time reversal. Concrete expressions could be written as N x N Gram-type determinants by employing Hirota's bilinearity and the KP hierarchy reduction, for positive integer N. Furthermore, the typical dynamics and behaviours of high-order soliton solutions are illustrated graphically.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Soliton solutions and soliton interactions for the coupled nonlinear Schrodinger equation with varying coefficients
    Tian, JP
    Li, JH
    Kang, LS
    Zhou, GS
    [J]. PHYSICA SCRIPTA, 2005, 72 (05) : 394 - 398
  • [42] OPTICAL SOLITON SOLUTIONS OF THE FRACTIONAL PERTURBED NONLINEAR SCHRODINGER EQUATION
    Ali, Khalid Karam
    Karakoc, Seydi Battal Gazi
    Rezazadeh, Hadi
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (04): : 930 - 939
  • [43] Asymptotic soliton train solutions of the defocusing nonlinear Schrodinger equation
    Kamchatnov, AM
    Kraenkel, RA
    Umarov, BA
    [J]. PHYSICAL REVIEW E, 2002, 66 (03):
  • [44] New visions of the soliton solutions to the modified nonlinear Schrodinger equation
    Bekir, Ahmet
    Zahran, Emad H. M.
    [J]. OPTIK, 2021, 232
  • [45] Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schrodinger Equation
    Wang, Bao
    Zhang, Zhao
    Li, Biao
    [J]. CHINESE PHYSICS LETTERS, 2020, 37 (03)
  • [46] Reducing a generalized Davey-Stewartson system to a non-local nonlinear Schrodinger equation
    Eden, Alp
    Erbay, Saadet
    Hacinliyan, Irma
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 41 (02) : 688 - 697
  • [47] Weakly non-local fluid mechanics:: the Schrodinger equation
    Ván, P
    Fülöp, T
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2066): : 541 - 557
  • [48] Invariant soliton solutions for the coupled nonlinear Schrodinger type equation
    Malik, Sandeep
    Kumar, Sachin
    Nisar, Kottakkaran Sooppy
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2023, 66 : 97 - 105
  • [49] SOLITON SOLUTIONS OF THE NEGATIVE-ORDER NONLINEAR SCHRODINGER EQUATION
    Urazboev, G. U.
    Baltaeva, I. I.
    Babadjanova, A. K.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 219 (02) : 761 - 769
  • [50] SOLITON AND ELLIPTICAL PERIODIC SOLUTIONS TO THE MODIFIED NONLINEAR SCHRODINGER EQUATION
    LIU Xiqiang(Department of Mathematics
    [J]. Journal of Systems Science & Complexity, 1999, (03) : 263 - 269