A Bayesian Model for Exploiting Application Constraints to Enable Unsupervised Training of a P300-based BCI

被引:47
|
作者
Kindermans, Pieter-Jan [1 ]
Verstraeten, David [1 ]
Schrauwen, Benjamin [1 ]
机构
[1] Univ Ghent, Ghent, Belgium
来源
PLOS ONE | 2012年 / 7卷 / 04期
关键词
BRAIN-COMPUTER-INTERFACE; MENTAL PROSTHESIS; COMPETITION; 2003; P300; WAVE; CLASSIFICATION; COMMUNICATION; ALGORITHM; SPELLER;
D O I
10.1371/journal.pone.0033758
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work introduces a novel classifier for a P300-based speller, which, contrary to common methods, can be trained entirely unsupervisedly using an Expectation Maximization approach, eliminating the need for costly dataset collection or tedious calibration sessions. We use publicly available datasets for validation of our method and show that our unsupervised classifier performs competitively with supervised state-of-the-art spellers. Finally, we demonstrate the added value of our method in different experimental settings which reflect realistic usage situations of increasing difficulty and which would be difficult or impossible to tackle with existing supervised or adaptive methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Towards Low-Cost P300-Based BCI Using Emotiv Epoc Headset
    Liu, Xiangqian
    Chao, Fei
    Jiang, Min
    Zhou, Changle
    Ren, Weifeng
    Shi, Minghui
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, 2018, 650 : 239 - 244
  • [32] Disjunctive Normal Unsupervised LDA for P300-based Brain-Computer Interfaces
    Elwardy, Majed
    Tasdizen, Tolga
    Cetin, Mujdat
    [J]. 2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 2261 - 2264
  • [33] How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger, Christoph
    Daban, Shahab
    Sellers, Eric
    Holzner, Clemens
    Krausz, Gunther
    Carabalona, Roberta
    Gramatica, Furio
    Edlinger, Guenter
    [J]. NEUROSCIENCE LETTERS, 2009, 462 (01) : 94 - 98
  • [34] Control or non-control state: that is the question! An asynchronous visual P300-based BCI approach
    Pinegger, Andreas
    Faller, Josef
    Halder, Sebastian
    Wriessnegger, Selina C.
    Mueller-Putz, Gernot R.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2015, 12 (01)
  • [35] Utilizing Fuzzy-SVM and a Subject Database to Reduce the Calibration Time of P300-Based BCI
    Ahi, Sercan Taha
    Yoshimura, Natsue
    Kambara, Hiroyuki
    Koike, Yasuharu
    [J]. NEURAL INFORMATION PROCESSING: MODELS AND APPLICATIONS, PT II, 2010, 6444 : 1 - +
  • [36] A mock terrorism application of the P300-based concealed information test
    Meixner, John B.
    Rosenfeld, J. Peter
    [J]. PSYCHOPHYSIOLOGY, 2011, 48 (02) : 149 - 154
  • [37] Investigation of New Unsupervised Processing Methods for P300-Based Brain-Computer Interface
    Alhaddad, Mohammed J.
    Kamel, Mahmoud I.
    Kadah, Yasser M.
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2014, 4 (03) : 363 - 369
  • [38] Semi-supervised joint spatio-temporal feature selection for P300-based BCI speller
    Jinyi Long
    Zhenghui Gu
    Yuanqing Li
    Tianyou Yu
    Feng Li
    Ming Fu
    [J]. Cognitive Neurodynamics, 2011, 5 : 387 - 398
  • [39] Out of the frying pan into the fire-the P300-based BCI faces real-world challenges
    Kleih, Sonja C.
    Kaufmann, Tobias
    Zickler, Claudia
    Halder, Sebastian
    Leotta, Francesco
    Cincotti, Febo
    Aloise, Fabio
    Riccio, Angela
    Herbert, Cornelia
    Mattia, Donatella
    Kuebler, Andrea
    [J]. BRAIN MACHINE INTERFACES: IMPLICATIONS FOR SCIENCE, CLINICAL PRACTICE AND SOCIETY, 2011, 194 : 27 - 46
  • [40] Real-time P300-based BCI in mechatronic control by using a multi-dimensional approach
    De Venuto, Daniela
    Annese, Valerio F.
    Mezzina, Giovanni
    [J]. IET SOFTWARE, 2018, 12 (05) : 418 - 424